With advances in technology, hyperelastic materials are seeing use in varied applications ranging from microfluidic pumps, artificial muscles to deformable robots. Development of such complex devices is leading to increased use of hyperelastic materials in the construction of components undergoing dynamic excitation such as the wings of a micro-unmanned aerial vehicle or the body of a serpentine robot made of hyperelastic polymers. Since the strain energy potentials of various hyperelastic material models have nonlinearities present in them, exploration of their nonlinear dynamic response lends itself to some interesting consequences. In this work, a structure made of a Mooney–Rivlin hyperelastic material and undergoing planar vibrations is considered. Since the Mooney–Rivlin material's strain energy potential has quadratic nonlinearities, a possibility of 1:2 internal resonance is explored. A finite element method (FEM) formulation implemented in Matlab is used to iteratively modify a base structure to get its first two natural frequencies close to the 1:2 ratio. Once a topology of the structure is achieved, the linear mode shapes of the structure can be extracted from the finite element analysis, and a more complete nonlinear Lagrangian formulation of the hyperelastic structure can be used to develop a nonlinear two-mode dynamic model of the structure. The nonlinear response of the structure can be obtained by application of perturbation methods such as averaging on the two-mode model. It is shown that the nonlinear strain energy potential for the Mooney–Rivlin material makes it possible for internal resonance to occur in such structures. The effect of nonlinear material parameters on the dynamic response is investigated.

References

References
1.
Bigoni
,
D.
,
2012
,
Nonlinear Solid Mechanics
.
Cambridge University Press
,
New York
.
2.
Marckmann
,
G.
, and
Verron
,
E.
,
2006
, “
Comparison of Hyperelastic Models for Rubber-Like Materials
,”
Rubber Chem. Technol.
,
79
(
5
), pp.
835
858
.10.5254/1.3547969
3.
Park
,
Y. L.
,
Majidi
,
C.
,
Kramer
,
R.
,
Berard
,
P.
, and
Wood
,
R.
,
2010
, “
Hyperelastic Pressure Sensing With a Liquid-Embedded Elastomer
,”
J. Micromech. Microeng.
,
20
(12)
, p.
125029
.10.1088/0960-1317/20/12/125029
4.
Richards
,
A. W.
, and
Odegard
,
G. W.
,
2010
, “
Constitutive Modeling of Electrostrictive Polymers Using a Hyperelasticity-Based Approach
,”
ASME J. Appl. Mech.
,
77
(
1
), pp.
1
15
.10.1115/1.3173766
5.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100 Percent
,”
Science
,
287
(5454)
, pp.
836
839
.10.1126/science.287.5454.836
6.
Xia
,
F.
,
Tadigadapa
,
S.
, and
Zhang
,
Q.
,
2005
, “
Electroactive Polymer Based Microfluidic Pump
,”
Sens. Actuators A
,
125
(2)
, pp.
346
352
.10.1016/j.sna.2005.06.026
7.
Petralia
,
M. T.
, and
Wood
,
R. J.
,
2010
, “
Fabrication and Analysis of Dielectric–Elastomer Minimum-Energy Structures for Highly-Deformable Soft Robotic Systems
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
Taipei
,
Taiwan
, Oct. 18–22, pp.
2357
2363
.10.1109/IROS.2010.5652506
8.
Engel
,
L.
,
Shklovsky
,
J.
,
Schreiber
,
D.
,
Krylov
,
S.
, and
Diamand
,
Y. S.
,
2012
, “
Freestanding Smooth Micron-Scale Polydimethylsiloxane (PDMS) Membranes by Thermal Imprinting
,”
J. Micromech. Microeng.
,
22
(4)
, p.
045003
.10.1088/0960-1317/22/4/045003
9.
Bajaj
,
A. K.
,
Chang
,
S. I.
, and
Johnson
,
J. M.
,
1994
, “
Amplitude Modulated Dynamics of a Resonantly Excited Autoparametric Two Degree-of-Freedom System
,”
Nonlinear Dyn.
,
5
(
4
), pp.
433
457
.10.1007/BF00052453
10.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1990
, “
Nonlinear Motions of Beam-Mass Structure
,”
Nonlinear Dyn.
,
1
(1)
, pp.
39
61
.10.1007/BF01857584
11.
Wang
,
F.
, and
Bajaj
,
A. K.
,
2010
, “
Nonlinear Dynamics of a Three-Beam Structure With Attached Mass and Three-Mode Interactions
,”
Nonlinear Dyn.
,
62
(
1–2
), pp.
461
484
.10.1007/s11071-010-9734-2
12.
Vyas
,
A.
,
Bajaj
,
A. K.
,
Raman
,
A.
, and
Peroulis
,
D.
,
2009
, “
A Microresonator Design Based on Nonlinear 1:2 Internal Resonance in Flexural Structural Modes
,”
J. Microelectromech. Syst.
,
18
(
3
), pp.
744
762
.10.1109/JMEMS.2009.2017081
13.
Vyas
,
A.
,
Peroulis
,
D.
, and
Bajaj
,
A. K.
,
2008
, “
Dynamics of a Nonlinear Microresonator Based on Resonantly Interacting Flexural–Torsional Modes
,”
Nonlinear Dyn.
,
54
(
1–2
), pp.
31
52
.10.1007/s11071-007-9326-y
14.
Nayfeh
,
A. H.
,
2000
,
Nonlinear Interactions: Analytical, Computational, and Experimental Methods
,
Wiley-Interscience
,
New York
.
15.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity: On the Correlation of Theory and Experiment for Compressible Rubberlike Solids
,”
Proc. R. Soc. A
,
328
(
1575
), pp.
567
583
.10.1098/rspa.1972.0096
16.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(2)
, pp.
359
373
.10.1002/nme.1620240207
17.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
M. E.
,
2007
, “
Dynamic Pull-in Phenomenon in MEMS Resonators
,”
Nonlinear Dyn.
,
48
(
1–2
), pp.
153
163
.10.1007/s11071-006-9079-z
18.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics (Microsystems)
,
1st ed.
,
Springer
,
New York
.
19.
Rhoads
,
J. F.
,
Shaw
,
S.
, and
Turner
,
K.
,
2010
, “
Nonlinear Dynamics and Its Applications in Micro- and Nanoresonators
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
3
), p.
034001
.10.1115/1.4001333
20.
Cook
,
A. H.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2004
,
Concepts and Applications of Finite Element Analysis
,
Wiley-Interscience
,
New York
.
21.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(9–10)
, pp.
635
654
.10.1007/s004190050248
22.
Rivlin
,
R. S.
,
1948
, “
Large Elastic Deformations of Isotropic Materials IV: Further Developments of the General Theory
,”
Proc. R. Soc. A
,
241
(835), pp.
379
397
.10.1098/rsta.1948.0024
23.
George
,
E. D.
, Jr.
,
Haduch
,
G. A.
, and
Jordan
,
S.
,
1988
, “
The Integration of Analysis and Testing for the Simulation of the Response of Hyperelastic Materials
,”
Finite Elem. Anal. Des.
,
4
(
1)
, pp.
19
42
.10.1016/0168-874X(88)90021-2
24.
Ambroz
,
R.
,
2007
, “
Optimalization of Cabin Mounting
,” M.S. thesis, Brno University of Technology, Brno, Czech Republic.
25.
He
,
W.
,
Bindel
,
D.
, and
Govindjee
,
S.
,
2012
, “
Topology Optimization in Micromechanical Resonator Design
,”
Optim. Eng.
,
13
(2), pp.
271
292
.10.1007/s11081-011-9139-1
26.
Chadwick
,
P.
,
1999
,
Continuum Mechanics, Concise Theory and Problems
,
Dover
,
New York
.
27.
Kelleher
,
J. E.
,
Siegmund
,
T.
,
Du
,
M.
,
Naseri
,
E.
, and
Chan
,
R. W.
,
2013
, “
The Anisotropic Hyperelastic Biomechanical Response of the Vocal Ligament and Implications for Frequency Regulation: A Case Study
,”
J. Acoust. Soc. Am.
,
133
(
3
), pp.
1625
1636
.10.1121/1.4776204
You do not currently have access to this content.