More and more attention has been paid to reduce the low frequency interior noise of the elastic cavity, such as automobiles, ships, airplanes, and railway vehicles, to provide the more comfortable riding environment for passengers. Identification of the interior acoustical sources in the low frequency range is vitally important for the sound quality design inside the elastic cavity. By transformation of the sound pressure level into the specific loudness, a multipoint panel acoustic contribution method based on Moore–Glasberg loudness model is proposed to identify the acoustic contribution of local structural panels of an elastic cavity. The finite element (FE) equation of vibro-acoustic coupling structure with the visco-elastic damping is formulated to evaluate the acoustic panel contribution. Two parameters of acoustic contribution sum and total sound field contribution are derived to measure the acoustic contribution of each panel at the important peak frequencies for the multiple evaluation points. A carriage of high-speed train is modeled as the elastic cavity to demonstrate the application of the developed algorithm. The bottom panel of the carriage is identified to make the most significant contribution to the loudness of evaluation points. The reduction effect of the various design parameters of visco-elastic damping layer on the bottom panel is investigated. The proposed method can efficiently arrange the visco-elastic damping layer on the bottom panel to reduce the interior loudness.

References

References
1.
Teik
,
C. L.
,
2000
, “
Automotive Panel Noise Contribution Modeling Based on Finite Element and Measured Structural-Acoustic Spectra
,”
Appl. Acoust.
,
60
(
4
), pp.
505
519
.10.1016/S0003-682X(00)00007-4
2.
Ding
,
W. P.
, and
Chen
,
H. L.
,
2002
, “
Research on the Interior Noise Contributed From a Local Panel's Vibration of an Elastic Thin-Walled Cavity
,”
Appl. Acoust.
,
63
(
1
), pp.
95
102
.10.1016/S0003-682X(01)00016-0
3.
Wu
,
T. W.
,
Ciskowski
,
R. D.
, and
Seybert
,
A. F.
,
1992
, “
Vectorization and Parallelization of the Acoustic Boundary Element Code BEMAP on the IBM ES/3090 VF
,”
Eng. Anal. Bound. Elem.
,
10
(
1
), pp.
17
26
.10.1016/0955-7997(92)90075-I
4.
Suzuki
,
S.
,
Maruyama
,
S.
, and
Ido
,
H.
,
1989
, “
Boundary Element Analysis of Cavity Noise Problems With Complicated Boundary Condition
,”
J. Sound Vib.
,
130
(
1
), pp.
79
96
.10.1016/0022-460X(89)90521-X
5.
Craggs
,
A.
,
1997
, “
Acoustic Modeling: Finite Element Method
,”
Encyclopedia of Acoustics
, Vol.
1
,
M. J.
Crocker
, ed.,
Wiley
, Hoboken, NJ.
6.
Liu
,
Z. S.
,
Lee
,
H. P.
, and
Lu
,
C.
,
2006
, “
Passive and Active Interior Noise Control of Box Structures Using the Structural Intensity Method
,”
Appl. Acoust.
,
67
(
2
), pp.
112
134
.10.1016/j.apacoust.2005.04.010
7.
Liang
,
X. H.
,
Zhu
,
P.
,
Lin
,
Z. Q.
, and
Zhang
,
Y.
,
2007
, “
The Acoustic Analysis of Lightweight Auto-Body Based on Finite Element Method and Boundary Element Method
,”
Front. Mech. Eng. Chin.
,
4
(
2
), pp.
99
103
.10.1007/s11465-007-0017-7
8.
Han
,
X.
,
Yu
,
H. D.
,
Guo
,
Y. J.
, and
Lin
,
Z. Q.
,
2008
, “
Study on Automotive Interior Sound Field Refinement Based on Panel Acoustic Contribution Analysis
,”
J. Shanghai Jiaotong Univ.
,
42
(
8
), pp.
1254
1258
.1006-2469(2008)08-1254-05
9.
Zwicker
,
E.
, and
Fastl
,
H.
,
1999
,
Psychoacoustics: Facts and Models
,
Spring-Verlag
,
Berlin
.
10.
Hardy
,
A. E. J.
,
2000
, “
Measurement and Assessment of Noise Within Passenger Trains
,”
J. Sound Vib.
,
231
(
3
), pp.
819
829
.10.1006/jsvi.1999.2565
11.
Parizet
,
E.
,
Hamzaoui
,
N.
, and
Jacquemoud
,
J.
,
2002
, “
Noise Assessment in a High-Speed Train
,”
Appl. Acoust.
,
63
(
10
), pp.
1109
1124
.10.1016/S0003-682X(02)00017-8
12.
Fan
,
R. P.
,
Meng
,
G.
,
Yang
,
J.
, and
He
,
C. C.
,
2008
, “
Internal Noise Reduction in Railway Vehicles: A Case Study in China
,”
Transp. Res. D,
13
(
4
), pp.
213
220
.10.1016/j.trd.2008.02.005
13.
Fan
,
R. P.
,
Meng
,
G.
,
Yang
,
J.
, and
He
,
C. C.
,
2009
, “
Experimental Study of the Effect of Viscoelastic Damping Materials on Noise and Vibration Reduction Within Railway Vehicles
,”
J. Sound. Vib.
,
319
(
1–2
), pp.
58
76
.10.1016/j.jsv.2008.03.071
14.
Moore
,
B. C. J.
,
2003
,
An Introduction to the Psychology of Hearing
,
5th ed.
,
Academic, San Diego
.
15.
Moore
,
B. C. J.
,
Glasberg
,
B. R.
, and
Baer
,
T.
,
1997
, “
A Model for the Prediction of Thresholds, Loudness, and Partial Loudness
,”
J. Aud. Eng. Soc.
,
45
(
4
), pp.
224
240
.
16.
Lesieutre
,
G. A.
,
1992
, “
Finite Elements for Dynamic Modeling of Uniaxial Rods With Frequency-Dependent Material Properties
,”
Int. J. Solids Struct.
,
29
(
12
), pp.
1567
1579
.10.1016/0020-7683(92)90134-F
17.
Lesieutre
,
G. A.
, and
Govindswamy
,
K.
,
1996
, “
Finite Element Modeling of Frequency Dependent and Temperature-Dependent Dynamic Behavior of Viscoelastic Materials in Simple Shear
,”
Int. J. Solids Struct.
,
33
(
3
), pp.
419
432
.10.1016/0020-7683(95)00048-F
18.
Ray
,
M. C.
, and
Baz
,
A.
,
1997
, “
Optimization of Energy Dissipation of Active Constrained Layer Damping Treatments of Plates
,”
J. Sound Vib.
,
208
(
3
), pp.
391
406
.10.1006/jsvi.1997.1171
19.
Rumpler
,
R.
,
Legay
,
A.
, and
Deü
,
J. F.
,
2011
, “
Performance of a Restrained-Interface Substructuring FE Model for Reduction of Structural-Acoustic Problems With Poroelastic Damping
,”
Comput. Struct
,
89
(
23–24
), pp.
2233
2248
.10.1016/j.compstruc.2011.08.012
20.
Zwicker
,
E.
,
Fastl
,
H.
, and
Dallmayr
,
C.
,
1984
, “
Basic Program for Calculating the Loudness of Sounds From Their 1/3 Oct Band Spectra According to ISO 532 B
,”
Acustica
,
55
(63), pp.
63
67
.
21.
Moore
,
B. C. J.
, and
Glasberg
,
B. R.
,
2004
, “
A Revised Model of Loudness Perception Applied to Cochlear Hearing Loss
,”
Hear Res.
,
188
(
1
), pp.
70
88
.10.1016/S0378-5955(03)00347-2
22.
Shaw
,
E. A. G.
,
1974
, “
Transformation of Sound Pressure Level From the Free Field to the Eardrum in the Horizontal Plane
,”
J. Acoust. Soc. Am.
,
56
(
6
), pp.
1848
1861
.10.1121/1.1903522
23.
Aibara
,
R.
,
Welsh
,
J. T.
,
Puria
,
S.
, and
Goode
,
R. L.
,
2001
, “
Human Middle Ear Sound Transfer Function and Cochlear Input Impedance
,”
Hear Res.
,
152
(
1–2
), pp.
100
109
.10.1016/S0378-5955(00)00240-9
24.
ISO, 2005, “Acoustics—Reference Zero for the Calibration of Audiometric Equipment. Part 7: Reference Threshold of Hearing Under Free-Field and Diffuse-Field Listening Conditions,” International Organization for Standardization, Geneva, Switzerland, ISO Standard No. 389-7:2005.
25.
ISO, 2003, “
Acoustics—Normal Equal-Loudness Contours
,” International Organization for Standardization, Geneva, Switzerland, ISO Standard No. 226:2003.
26.
Findley
,
W. N.
,
Lai
,
J. S.
, and
Onaran
,
K.
,
1989
,
Creep and Relaxation of Nonlinear Viscoelastic Materials
,
North-Holland
,
Amsterdam
.
27.
Christensen
,
R. M.
,
1982
,
Theory of Viscoelasticity
,
2nd ed.
,
Academic
,
London
.
28.
Aklonis
,
J. J.
, and
MacKnight
,
W. J.
,
2005
,
Introduction to Polymer Viscoelasticity
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.
29.
Bland
,
D. R.
,
1960
,
The Theory of Linear Viscoelasticity
,
Pergamon
,
New York
.
30.
Ferry
,
J. D.
,
1980
,
Viscoelastic Properties of Polymers
,
3rd ed.
,
Wiley
,
New York
.
31.
Park
,
S. W.
,
2001
, “
Analytical Modeling of Viscoelastic Dampers for Structural and Vibration Control
,”
Int. J. Solids Struct.
,
38
(
44–46
), pp.
8065
8092
.10.1016/S0020-7683(01)00026-9
32.
Park
,
S. W.
, and
Schapery
,
R. A.
,
1999
, “
Methods of Interconversion Between Linear Viscoelastic Material Functions. Part I—A Numerical Method Based on Prony Series
,”
Int. J. Solids Struct.
,
36
(
11
), pp.
1653
1675
.10.1016/S0020-7683(98)00055-9
33.
Schapery
,
R. A.
, and
Park
,
S. W.
,
1999
, “
Methods of Interconversion Between Linear Viscoelastic Material Functions. Part II—An Approximate Analytical Method
,”
Int. J. Solids Struct.
,
6
(
11
), pp.
1677
1699
.10.1016/S0020-7683(98)00060-2
34.
Railways Institute of Measurement Standards, 2006, “
The Limiting Value and Measurement Method for the Interior Noise in the Railway Passenger Coach
,” National Standard of the People's Republic of China, Standard No. GB/T 12816-2006.
35.
Lumsdaine
,
A.
, and
Scott
,
R. A.
,
1998
, “
Shape Optimization of Unconstrained Viscoelastic Layers Using Continuum Finite Elements
,”
J. Sound Vib.
,
216
(
1
), pp.
29
52
.10.1006/jsvi.1998.1668
36.
Cheng
,
L.
, and
Lapointe
,
R.
,
1995
, “
Vibration Attenuation of Panel Structures by Optimally Shaped Viscoelastic Coating With Added Weighted Considerations
,”
Thin-Walled Struct.
,
21
(
4
), pp.
307
326
.10.1016/0263-8231(95)93617-U
37.
Zheng
,
H.
,
Cai
,
C.
,
Pau
,
G. S. H.
, and
Liu
,
G. R.
,
2005
, “
Minimizing Vibration Response of Cylindrical Shells Through Layout Optimization of Passive Constrained Layer Damping Treatments
,”
J. Sound Vib.
,
279
(
3–5
), pp.
739
756
.10.1016/j.jsv.2003.11.020
You do not currently have access to this content.