A phenomenological model and analytical–numerical approach to systematically characterize variable hydrodynamic coefficients and maximum achievable responses in two-dimensional vortex-induced vibrations with dual two-to-one resonances are presented. The model is based on double Duffing and van der Pol oscillators which simulate a flexibly mounted circular cylinder subjected to uniform flow and oscillating in simultaneous cross-flow/in-line directions. Depending on system quadratic and cubic nonlinearities, amplitudes, oscillation frequencies and phase relationships, analytical closed-form expressions are derived to parametrically evaluate key hydrodynamic coefficients governing the fluid excitation, inertia and added mass force components, as well as maximum dual-resonant responses. The amplification of the mean drag is ascertained. Qualitative validations of numerical predictions with experimental comparisons are discussed. Parametric investigations are performed to highlight the important effects of system nonlinearities, mass, damping, and natural frequency ratios.

References

1.
Bearman
,
P. W.
,
2011
, “
Circular Cylinder Wakes and Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
27
(
5–6
), pp.
648
658
.10.1016/j.jfluidstructs.2011.03.021
2.
Sarpkaya
,
T.
,
2004
, “
A Critical Review of the Intrinsic Nature of Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
(
4
), pp.
389
447
.10.1016/j.jfluidstructs.2004.02.005
3.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
413
455
.10.1146/annurev.fluid.36.050802.122128
4.
Dahl
,
J. M.
,
Hover
,
F. S.
,
Triantafyllou
,
M. S.
, and
Oakley
,
O. H.
,
2010
, “
Dual Resonance in Vortex-Induced Vibrations at Subcritical and Supercritical Reynolds Numbers
,”
J. Fluid Mech.
,
643
, pp.
395
424
.10.1017/S0022112009992060
5.
Bishop
,
R. E. D.
, and
Hassan
,
A. Y.
, “
The Lift and Drag Forces on a Circular Cylinder Oscillating in a Flowing Fluid
,”
Proc. R. Soc. London, Ser. A
,
277
(
1368
), pp.
51
75
.10.1098/rspa.1964.0005
6.
Hartlen
,
R. T.
, and
Currie
,
I. G.
,
1970
, “
Lift-Oscillator Model of Vortex Induced Vibration
,”
J. Eng. Mech. Div.
,
96
(
5
), pp.
577
591
.
7.
Iwan
,
W. D.
, and
Blevins
,
R. D.
,
1974
, “
A Model for Vortex Induced Oscillation of Structures
,”
ASME J. Appl. Mech.
,
41
(
3
), pp.
581
586
.10.1115/1.3423352
8.
Skop
,
R. A.
, and
Balasubramanian
,
S.
,
1997
, “
A New Twist on an Old Model for Vortex-Excited Vibrations
,”
J. Fluids Struct.
,
11
(
4
), pp.
395
412
.10.1006/jfls.1997.0085
9.
Facchinetti
,
M. L.
,
de Langre
,
E.
, and
Biolley
,
F.
,
2004
, “
Coupling of Structure and Wake Oscillators in Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
(
2
), pp.
123
140
.10.1016/j.jfluidstructs.2003.12.004
10.
Gabbai
,
R. D.
, and
Benaroya
,
H.
,
2005
, “
An Overview of Modeling and Experiments of Vortex-Induced Vibration of Circular Cylinders
,”
J. Sound Vib.
,
282
(
3–5
), pp.
575
616
.10.1016/j.jsv.2004.04.017
11.
Srinil
,
N.
,
2010
, “
Multi-Mode Interactions in Vortex-Induced Vibrations of Flexible Curved/Straight Structures With Geometric Nonlinearities
,”
J. Fluids Struct.
,
26
(
7–8
), pp.
1098
1122
.10.1016/j.jfluidstructs.2010.08.005
12.
Srinil
,
N.
,
2011
, “
Analysis and Prediction of Vortex-Induced Vibrations of Variable-Tension Vertical Risers in Linearly Sheared Currents
,”
Appl. Ocean Res.
,
33
(
1
), pp.
41
53
.10.1016/j.apor.2010.11.004
13.
Srinil
,
N.
,
Wiercigroch
,
M.
, and
O'Brien
,
P.
,
2009
, “
Reduced-Order Modelling of Vortex-Induced Vibration of Catenary Riser
,”
Ocean Eng.
,
36
(
17–18
), pp.
1404
1414
.10.1016/j.oceaneng.2009.08.010
14.
Srinil
,
N.
, and
Zanganeh
,
H.
,
2012
, “
Modelling of Coupled Cross-Flow/In-Line Vortex-Induced Vibrations Using Double Duffing and van der Pol Oscillators
,”
Ocean Eng.
,
53
, pp.
83
97
.10.1016/j.oceaneng.2012.06.025
15.
Srinil
,
N.
,
Zanganeh
,
H.
, and
Day
,
A.
,
2013
, “
Two-Degree-of-Freedom VIV of Circular Cylinder With Variable Natural Frequency Ratio: Experimental and Numerical Investigations
,”
Ocean Eng.
,
73
, pp.
179
194
.10.1016/j.oceaneng.2013.07.024
16.
Jauvtis
,
N.
, and
Williamson
,
C. H. K.
,
2004
, “
The Effect of Two Degrees of Freedom on Vortex-Induced Vibration at Low Mass and Damping
,”
J. Fluid Mech.
,
509
, pp.
23
62
.10.1017/S0022112004008778
17.
Stappenbelt
,
B.
,
Lalji
,
F.
, and
Tan
,
G.
,
2007
, “
Low Mass Ratio Vortex-Induced Motion
,”
16th Australasian Fluid Mechanics Conference
, Gold Coast, Australia, December 2–7, pp.
1491
1497
.
18.
Blevins
,
R. D.
, and
Coughran
,
C. S.
,
2009
, “
Experimental Investigation of Vortex-Induced Vibration in One and Two Dimensions With Variable Mass, Damping, and Reynolds Number
,”
ASME J. Fluids Eng.
,
131
(
10
), p.
101202
.10.1115/1.3222904
19.
Morse
,
T. L.
, and
Williamson
,
C. H. K.
,
2009
, “
Fluid Forcing, Wake Modes, and Transitions for a Cylinder Undergoing Controlled Oscillations
,”
J. Fluids Struct.
,
25
(
4
), pp.
697
712
.10.1016/j.jfluidstructs.2008.12.003
20.
Hover
,
F. S.
,
Techet
,
A. H.
, and
Triantafyllou
,
M. S.
,
1998
, “
Forces on Oscillating Uniform and Tapered Cylinders in Cross Flow
,”
J. Fluid Mech.
,
363
, pp.
97
114
.10.1017/S0022112098001074
21.
Gopalkrishnan
,
R.
,
1993
,
Vortex-Induced Forces on Oscillating Bluff Cylinders
,
MIT Press
,
Cambridge, MA
.
22.
Staubli
,
T.
,
1983
, “
Calculation of the Vibration of an Elastically Mounted Cylinder Using Experimental Data From Forced Oscillation
,”
ASME J. Fluids Eng.
,
105
(
2
), pp.
225
229
.10.1115/1.3240968
23.
Carberry
,
J.
,
Sheridan
,
J.
, and
Rockwell
,
D.
,
2001
, “
Forces and Wake Modes of an Oscillating Cylinder
,”
J. Fluids Struct.
,
15
(
3–4
), pp.
523
532
.10.1006/jfls.2000.0363
24.
Williamson
,
C. H. K.
, and
Roshko
,
A.
,
1988
, “
Vortex Formation in the Wake of an Oscillating Cylinder
,”
J. Fluids Struct.
,
2
(
4
), pp.
355
381
.10.1016/S0889-9746(88)90058-8
25.
Govardhan
,
R.
, and
Williamson
,
C. H. K.
,
2000
, “
Modes of Vortex Formation and Frequency Response of a Freely Vibrating Cylinder
,”
J. Fluid Mech.
,
420
, pp.
85
130
.10.1017/S0022112000001233
26.
Jeon
,
D.
, and
Gharib
,
M.
,
2001
, “
On Circular Cylinders Undergoing Two-Degree-of-Freedom Forced Motions
,”
J. Fluids Struct.
,
15
(
3–4
), pp.
533
541
.10.1006/jfls.2000.0365
27.
Griffin
,
O. M.
,
1980
, “
Vortex-Excited Cross-Flow Vibrations of a Single Cylindrical Tube
,”
ASME J. Pressure Vessel Technol.
,
102
(
2
), pp.
158
166
.10.1115/1.3263315
28.
Blevins
,
R. D.
,
2009
, “
Models for Vortex-Induced Vibration of Cylinders Based on Measured Forces
,”
ASME J. Fluids Eng.
,
131
(
10
), p.
101203
.10.1115/1.3222906
29.
Sarpkaya
,
T.
,
1978
, “
Fluid Forces on Oscillating Cylinders
,”
ASCE J. Waterway, Port, Coastal Ocean Division
,
104
(
3
), pp.
275
290
.
30.
Blevins
,
R. D.
,
1990
,
Flow-Induced Vibrations
,
Van Nostrand Reinhold
,
New York
.
31.
Dhanwani
,
M. A.
,
Sarkar
,
A.
, and
Patnaik
,
B. S. V.
,
2013
, “
Lumped Parameter Models of Vortex Induced Vibration With Application to the Design of Aquatic Energy Harvester
,”
J. Fluids Struct.
,
43
, pp.
302
324
.10.1016/j.jfluidstructs.2013.09.008
32.
Currie
,
I. G.
, and
Turnbull
,
D. H.
,
1987
, “
Streamwise Oscillations of Cylinders Near the Critical Reynolds Number
,”
J. Fluids Struct.
,
1
(
2
), pp.
185
196
.10.1016/S0889-9746(87)90331-8
33.
Kim
,
W. J.
, and
Perkins
,
N. C.
,
2002
, “
Two-Dimensional Vortex-Induced Vibration of Cable Suspensions
,”
J. Fluids Struct.
,
16
(
2
), pp.
229
245
.10.1006/jfls.2001.0418
34.
Meng
,
S.
, and
Kajiwara
,
H.
,
2013
, “
Dynamics of a Cantilevered Pipe Discharging Fluid With a Nozzle. Part 2: Three-Dimensional Dynamic Analysis and Parametric Study
,”
23rd International Offshore and Polar Engineering Conference
, Anchorage, AK, June 30–July 5, pp.
202
209
.
35.
Kaiktsis
,
L.
,
Triantafyllou
,
G. S.
, and
Özbas
,
M.
,
2007
, “
Excitation, Inertia, and Drag Forces on a Cylinder Vibrating Transversely to a Steady Flow
,”
J. Fluids Struct.
,
23
(
1
), pp.
1
21
.10.1016/j.jfluidstructs.2006.08.006
36.
Nayfeh
,
A. H.
,
1993
,
Introduction to Perturbation Techniques
,
Wiley
,
New York
.
37.
Dahl
,
J. M.
,
2008
, “
Vortex-Induced Vibration of a Circular Cylinder With Combined In-Line and Cross-Flow Motion
,” Ph.D. thesis, MIT, Cambridge, MA.
38.
Franzini
,
G. R.
,
Goncalves
,
R. T.
,
Meneghini
,
J. R.
, and
Fujarra
,
A. L. C.
,
2012
, “
Comparison Between Force Measurements of One and Two Degrees-of-Freedom VIV on Cylinder With Small and Large Mass Ratio
,”
10th International Conference on Flow-Induced Vibration and Flow-Induced Noise
, Dublin, July 2–6, pp.
561
568
.
39.
Govardhan
,
R.
, and
Williamson
,
C. H. K.
,
2002
, “
Resonance Forever: Existence of a Critical Mass and an Infinite Regime of Resonance in Vortex-Induced Vibration
,”
J. Fluid Mech.
,
473
(
1
), pp.
147
166
.10.1017/S0022112002002318
40.
Bao
,
Y.
,
Huang
,
C.
,
Zhou
,
D.
,
Tu
,
J.
, and
Han
,
Z.
,
2012
, “
Two-Degree-of-Freedom Flow-Induced Vibrations on Isolated and Tandem Cylinders With Varying Natural Frequency Ratios
,”
J. Fluids Struct.
,
35
, pp.
50
75
.10.1016/j.jfluidstructs.2012.08.002
You do not currently have access to this content.