In this paper, the authors present a discrete system model to study the coupled axial–torsional dynamics of a drill string. The model is developed taking into account state-dependent time delay and nonlinearities due to dry friction and loss of contact. Simulations are carried out by using a 32-segment model with 128 states. Bit bounce is observed through time histories of axial vibrations, while stick-slip phenomenon is noted in the torsion response. The normal strain contours of this spatial–temporal system demonstrate the existence of strain wave propagation along the drill string. The shear strain wave exhibits features of wave nodes and wave loops along the drill string, which indicate that the torsional motion has the properties of a standing wave. When the penetration rate is varied, qualitative changes are observed in the system response. The observed behavior includes chaotic and hyperchaotic dynamics. Stability analysis reveals a stable region for the degenerate one-segment model. This stable region becomes infinitesimally small, as the resolution of spatial discretization is increased. This finding suggests that drill-string motions have a high likelihood of being self-exited in practical drilling operations.

References

1.
Jansen
,
J. D.
,
1993
,
Nonlinear Dynamics of Oilwell Drillstrings
,
Delft University Press
, Delft, Netherlands.
2.
Dufeyte
,
M.-P.
, and
Henneuse
,
H.
,
1991
, “
Detection and Monitoring of the Slip-Stick Motion: Field Experiments
,”
SPE/IADC Drilling Conference
, Amsterdam, March 11–14, Paper No. 21945, pp.
429
438
.10.2118/21945-MS
3.
Pavone
,
D. R.
, and
Desplans
,
J. P.
,
1994
, “
Application of High Sampling Rate Downhole Measurements for Analysis and Cure of Stick-Slip in Drilling
,”
SPE Annual Technical Conference & Exhibition
, New Orleans, LA, September 25–28, Paper No. 28324, pp.
335
345
.10.2118/28324-MS
4.
Navarro-Lopez
,
E. M.
, and
Suarez
,
R.
,
2004
, “
Practical Approach to Modelling and Controlling Stick-Slip Oscillations in Oilwell Drillstrings
,”
2004 IEEE International Conference on Control Applications
, Taipei, Taiwan, September 2–4, Vol.
2
, pp.
1454
1460
.10.1109/CCA.2004.1387580
5.
Brett
,
J. F.
,
1992
, “
The Genesis of Bit-Induced Torsional Drillstring Vibrations
,”
SPE Drill. Eng.
,
7
(
3
), pp.
168
174
.10.2118/21943-PA
6.
Mihajlović
,
N.
,
van Veggel
,
A. A.
,
van de Wouw
,
N.
, and
Nijmeijer
,
H.
,
2004
, “
Analysis of Friction-Induced Limit Cycling in an Experimental Drill-String System
,”
ASME J. Dyn. Syst., Meas. Contr.
,
126
(
4
), pp.
709
720
.10.1115/1.1850535
7.
Liao
,
C.-M.
,
Balachandran
,
B.
,
Karkoub
,
M.
, and
Abdel-Magid
,
Y. L.
,
2011
, “
Drill-String Dynamics: Reduced-Order Models and Experimental Studies
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041008
.10.1115/1.4003406
8.
Richard
,
T.
,
Germay
,
C.
, and
Detournay
,
E.
,
2004
, “
Self-Excited Stick-Slip Oscillations of Drill Bits
,”
C. R. Méc.
,
332
(
8
), pp.
619
626
.10.1016/j.crme.2004.01.016
9.
Long
,
X.
, and
Balachandran
,
B.
,
2004
, “
Milling Model With Variable Time Delay
,”
ASME
Paper No. IMECE2004-59207. 10.1115/IMECE2004-59207
10.
Long
,
X. H.
,
Balachandran
,
B.
, and
Mann
,
B.
,
2007
, “
Dynamics of Milling Processes With Variable Time Delays
,”
Nonlinear Dyn.
,
47
(1–3), pp.
49
63
.10.1007/s11071-006-9058-4
11.
Insperger
,
T.
,
Stépán
,
G.
, and
Turi
,
J.
,
2007
, “
State-Dependent Delay in Regenerative Turning Processes
,”
Nonlinear Dyn.
,
47
(1–3), pp.
275
283
.10.1007/s11071-006-9068-2
12.
Insperger
,
T.
,
Barton
,
D. A. W.
, and
Stépán
,
G.
,
2008
, “
Criticality of Hopf Bifurcation in State-Dependent Delay Model of Turning Processes
,”
Int. J. Non-Linear Mech.
,
43
(
2
), pp.
140
149
.10.1016/j.ijnonlinmec.2007.11.002
13.
Liu
,
X.
,
Vlajic
,
N.
,
Long
,
X.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2014
, “
Multiple Regenerative Effects in Cutting Process and Nonlinear Oscillations
,”
Int. J. Dyn. Contr.
,
2
(
1
), pp.
86
101
.10.1007/s40435-014-0078-5
14.
Richard
,
T.
,
Germay
,
C.
, and
Detournay
,
E.
,
2007
, “
A Simplified Model to Explore the Root Cause of Stick-Slip Vibrations in Drilling Systems With Drag Bits
,”
J. Sound Vib.
,
305
(
3
), pp.
432
456
.10.1016/j.jsv.2007.04.015
15.
Besselink
,
B.
,
van de Wouw
,
N.
, and
Nijmeijer
,
H.
,
2011
, “
A Semi-Analytical Study of Stick-Slip Oscillations in Drilling Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021006
.10.1115/1.4002386
16.
Germay
,
C.
,
Denoël
,
V.
, and
Detournay
,
E.
,
2009
, “
Multiple Mode Analysis of the Self-Excited Vibrations of Rotary Drilling Systems
,”
J. Sound Vib.
,
325
(
1–2
), pp.
362
381
.10.1016/j.jsv.2009.03.017
17.
Jafari
,
A. A.
,
Kazemi
,
R.
, and
Mahyari
,
M. F.
,
2011
, “
The Effects of Drilling Mud and Weight Bit on Stability and Vibration of a Drill String
,”
ASME J. Vib. Acoust.
,
134
(1), p.
011014
.10.1115/1.4005033
18.
Liu
,
X.
,
Vlajic
,
N.
,
Long
,
X.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2013
, “
Nonlinear Motions of a Flexible Rotor With a Drill Bit: Stick-Slip and Delay Effects
,”
Nonlinear Dyn.
,
72
(
1
), pp.
61
77
.10.1007/s11071-012-0690-x
19.
Sarker
,
M. M.
,
Rideout
,
D. G.
, and
Butt
,
S. D.
,
2012
, “
Advantages of an LQR Controller for Stick-Slip and Bit-Bounce Mitigation in an Oilwell Drillstring
,”
ASME
Paper No. IMECE2012-87856. 10.1115/IMECE2012-87856
20.
Germay
,
C.
,
van de Wouw
,
N.
,
Nijmeijer
,
H.
, and
Sepulchre
,
R.
,
2009
, “
Nonlinear Drillstring Dynamics Analysis
,”
SIAM J. Appl. Dyn. Syst.
,
8
(
2
), pp.
527
553
.10.1137/060675848
21.
Kreuzer
,
E.
, and
Struck
,
H.
,
2005
, “
Active Damping of Spatio-Temporal Dynamics of Drill-Strings
,”
IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics
, Rome, June 8–13, Vol.
122
, pp.
407
417
.10.1007/1-4020-3268-4_38
22.
Econini
,
I.
, and
Somerton
,
W.
,
1982
, “
A Dynamic Model for Rotary Rock Drilling
,”
ASME J. Energy Res. Technol.
,
104
(
2
), pp.
108
120
.10.1115/1.3230387
23.
Detournay
,
E.
, and
Defourny
,
P.
,
1992
, “
A Phenomenological Model for the Drilling Action of Drag Bits
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
29
(
1
), pp.
13
23
.10.1016/0148-9062(92)91041-3
24.
Zhou
,
C.
, and
Lai
,
C.-H.
,
1999
, “
Extracting Messages Masked by Chaotic Signals of Time-Delay Systems
,”
Phys. Rev. E
,
60
(1), pp.
320
323
.10.1103/PhysRevE.60.320
25.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
.10.1002/nme.505
26.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.10.1002/nme.1061
You do not currently have access to this content.