Noninvasive measurement of mechanical wave motion (sound and vibration) in the lungs may be of diagnostic value, as it can provide information about the mechanical properties of the lungs, which in turn are affected by disease and injury. In this study, two previously derived theoretical models of the vibroacoustic behavior of the lung parenchyma are compared: (1) a Biot theory of poroviscoelasticity and (2) an effective medium theory for compression wave behavior (also known as a “bubble swarm” model). A fractional derivative formulation of shear viscoelasticity is integrated into both models. A measurable “fast” compression wave speed predicted by the Biot theory formulation has a significant frequency dependence that is not predicted by the effective medium theory. Biot theory also predicts a slow compression wave. The experimentally measured fast compression wave speed and attenuation in a pig lung ex vivo model agreed well with the Biot theory. To obtain the parameters for the Biot theory prediction, the following experiments were undertaken: quasistatic mechanical indentation measurements were performed to estimate the lung static shear modulus; surface wave measurements were performed to estimate lung tissue shear viscoelasticity; and flow permeability was measured on dried lung specimens. This study suggests that the Biot theory may provide a more robust and accurate model than the effective medium theory for wave propagation in the lungs over a wider frequency range.

References

References
1.
Faffe
,
D. S.
, and
Zin
,
W. A.
,
2009
, “
Lung Parenchymal Mechanics in Health and Disease
,”
Physiol. Rev.
,
89
, pp.
759
775
.10.1152/physrev.00019.2007
2.
Goldstein
,
R. H.
,
Lucey
,
E. C.
,
Franzblau
,
C.
, and
Snider
,
G. L.
,
1979
, “
Failure of Mechanical Properties to Parallel Changes in Lung Connective Tissue Composition in Bleomycin-Induced Pulmonary Fibrosis in Hamsters
,”
Am. Rev. Respir. Dis.
,
120
(
1
), pp.
67
73
.
3.
Ebihara
,
T.
,
Venkatesan
,
N.
,
Tanaka
,
R.
, and
Ludwig
,
M. S.
,
2000
,
“Changes in Extracellular Matrix and Tissue Viscoelasticity in Bleomycin-Induced Lung Fibrosis. Temporal Aspects,”
Am. J. Respir. Crit. Care Med.
,
162
, pp.
1569
1576
.10.1164/ajrccm.162.4.9912011
4.
Salerno
,
F. G.
, and
Ludwig
,
M. S.
,
1999
, “
Elastic Moduli of Excised Constricted Rat Lungs
,”
J. Appl. Physiol.
,
86
(
1
), pp.
66
70
.
5.
Kononov
,
S.
,
Brewer
,
K.
,
Sakai
,
H.
,
Cavalcante
,
F. S.
,
Sabayanagam
,
C. R.
,
Ingenito
,
E. P.
, and
Suki
,
B.
,
2001
, “
Roles of Mechanical Forces and Collagen Failure in the Development of Elastase-Induced Emphysema
,”
Am. J. Respir. Crit. Care Med.
,
164
, pp.
1920
1926
.10.1164/ajrccm.164.10.2101083
6.
Ito
,
S.
,
Ingenito
,
E. P.
,
Brewer
,
K. K.
,
Black
,
L. D.
,
Parameswaran
,
H.
,
Lutchen
,
K. R.
, and
Suki
,
B.
,
2005
, “
Mechanics, Nonlinearity, and Failure Strength of Lung Tissue in a Mouse Model of Emphysema: Possible Role of Collagen Remodeling
,”
J. Appl. Physiol.
,
98
, pp.
503
511
.10.1152/japplphysiol.00590.2004
7.
Chen
,
Q.
,
Mai
,
V. M.
,
Bankier
,
A. A.
,
Napadow
,
V. J.
,
Gilbert
,
R. J.
, and
Edelman
,
R. R.
,
2001
, “
Ultrafast MR Grid-Tagging Sequence for Assessment of Local Mechanical Properties of the Lungs
,”
Magn. Reson. Med.
,
45
(
1
), pp.
24
28
.10.1002/1522-2594(200101)45:1<24::AID-MRM1004>3.0.CO;2-6
8.
Napadow
,
V. J.
,
Mai
,
V. M.
,
Bankier
,
A. A.
,
Gilbert
,
R. J.
,
Edelman
,
R. R.
, and
Chen
,
Q.
,
2001
, “
Determination of Regional Pulmonary Parenchymal Strain During Normal Respiration Using Spin Inversion Tagged Magnetization
,”
J. Magn. Reson. Imaging
,
13
(
3
), pp.
467
474
.10.1002/jmri.1068
9.
Murphy
,
R.
,
2007
, “
Computerized Multichannel Lung Sound Analysis: Development of Acoustic Instruments for Diagnosis and Management of Medical Conditions
,”
IEEE Eng. Med. Bio.
,
26
, pp.
16
19
.10.1109/MEMB.2007.289117
10.
Charleston-Villalobos
,
S.
,
Cortés-Rubiano
,
S.
,
González-Camerena
,
R.
,
Chi-Lem
,
G.
, and
Aljama-Corrales
,
T.
,
2004
, “
Respiratory Acoustic Thoracic Imaging (RATHI): Assessing Deterministic Interpolation Techniques
,”
Med. Biol. Eng. Comput.
,
42
(
5
), pp.
618
626
.10.1007/BF02347543
11.
Kompis
,
M.
,
Pasterkamp
,
H.
, and
Wodicka
,
G. R.
,
2001
, “
Acoustic Imaging of the Chest
,”
Chest
,
120
, pp.
1309
1321
.10.1378/chest.120.4.1309
12.
Dellinger
,
R. P.
,
Parrillo
,
J. E.
,
Kushnir
,
A.
,
Rossi
,
M.
, and
Kushnir
,
I.
,
2008
, “
Dynamic Visualization of Lung Sounds With a Vibration Response Device: A Case Series
,”
Respiration
,
75
(
1
), pp.
60
72
.10.1159/000103558
13.
Maher
,
T. M.
,
Gat
,
M.
,
Allen
,
D.
,
Devaraj
,
A.
,
Wells
,
A. U.
, and
Geddes
,
D. M.
,
2008
, “
Reproducibility of Dynamically Represented Acoustic Lung Images From Healthy Individuals
,”
Thorax
,
63
(
6
), pp.
542
548
.10.1136/thx.2007.086405
14.
Wang
,
Z.
,
Jean
,
S.
, and
Bartter
,
T.
,
2009
, “
Lung Sound Analysis in the Diagnosis of Obstructive Airway Disease
,”
Respiration
,
77
(
2
), pp.
134
138
.10.1159/000178023
15.
Ozer
,
M. B.
,
Acikgoz
,
S.
,
Royston
,
T. J.
,
Mansy
,
H. A.
, and
Sandler
,
R. H.
,
2007
, “
Boundary Element Model for Simulating Sound Propagation and Source Localization Within the Lungs
,”
J. Acoust. Soc. Am.
,
122
(
1
), pp.
657
671
.10.1121/1.2715453
16.
Goss
,
B. C.
,
McGee
,
K. P.
,
Ehman
,
E. C.
,
Manduca
,
A.
, and
Ehman
,
R. L.
,
2006
, “
Magnetic Resonance Elastography of the Lung: Technical Feasibility
,”
Magn. Reson. Med.
,
56
, pp.
1060
1066
.10.1002/mrm.21053
17.
McGee
,
K. P.
,
Hubmayr
,
R. D.
, and
Ehman
,
R. L.
,
2008
, “
MR Elastography of the Lung With Hyperpolarized 3He
,”
Magn. Reson. Med.
,
59
, pp.
14
18
.10.1002/mrm.21465
18.
McGee
,
K. P.
,
Lake
,
D.
,
Mariappan
,
Y.
,
Hubmayr
,
R. D.
,
Manduca
,
A.
,
Ansell
,
K.
, and
Ehman
,
R. L.
,
2011
, “
Calculation of Shear Stiffness in Noise Dominated Magnetic Resonance Elastography Data Based on Principal Frequency Estimation
,”
Phys. Med. Biol.
,
56
, pp.
4291
4309
.10.1088/0031-9155/56/14/006
19.
Mariappan
,
Y. K.
,
Kolipaka
,
A.
,
Manduca
,
A.
,
Hubmayr
,
R. D.
,
Ehman
,
R. L.
,
Araoz
,
P.
, and
McGee
,
K. P.
,
2012
, “
Magnetic Resonance Elastography of the Lung Parenchyma in an In Situ Porcine Model With a Noninvasive Mechanical Driver: Correlation of Shear Stiffness With Trans-Respiratory System Pressures
,”
Magn. Reson. Med.
,
67
, pp.
210
217
.10.1002/mrm.22976
20.
Sinkus
,
R.
,
Tanter
,
M.
,
Xydeas
,
T.
,
Catheline
,
S.
,
Bercoff
,
J.
, and
Fink
,
M.
,
2005
, “
Viscoelastic Shear Properties of In Vivo Breast Lesions Measured by MR Elastography
,”
Magn. Reson. Imaging
,
23
(
2
), pp.
159
165
.10.1016/j.mri.2004.11.060
21.
Shah
,
N. S.
,
Kruse
,
S. A.
,
Lager
,
D. J.
,
Farell-Baril
,
G.
,
Lieske
,
J. C.
,
King
,
B. F.
, and
Ehman
,
R. L.
,
2004
, “
Evaluation of Renal Parenchymal Disease in a Rat Model With Magnetic Resonance Elastography
,”
Magn. Reson. Med.
,
52
(
1
), pp.
56
64
.10.1002/mrm.20101
22.
Kemper
,
J.
,
Sinkus
,
R.
,
Lorenzen
,
J.
,
Nolte-Ernsting
,
C.
,
Stork
,
A.
, and
Adam
,
G.
,
2004
, “
MR Elastography of the Prostate: Initial In-Vivo Application
,”
Rofo
,
176
(
8
), pp.
1094
1099
.10.1055/s-2004-813279
23.
Jenkyn
,
T. R.
,
Ehman
,
R. L.
, and
An
,
K.
,
2003
, “
Noninvasive Muscle Tension Measurement Using the Novel Technique of Magnetic Resonance Elastography (MRE)
,”
J. Biomech.
,
36
(
12
), pp.
1917
1921
.10.1016/S0021-9290(03)00005-8
24.
Klatt
,
D.
,
Hamhaber
,
U.
,
Asbach
,
P.
,
Braun
,
J.
, and
Sack
, I
.
,
2007
, “
Noninvasive Assessment of the Rheological Behavior of Human Organs Using Multifrequency MR Elastography: A Study of Brain and Liver Viscoelasticity
,”
Phys. Med. Biol.
,
52
(
24
), pp.
7281
7294
.10.1088/0031-9155/52/24/006
25.
Rice
,
D. A.
,
1983
, “
Sound Speed in Pulmonary Parenchyma
,”
J. Appl. Physiol.
,
54
(
1
), pp.
304
308
.
26.
Wodicka
,
G. R.
,
Stevens
,
K. N.
,
Golub
,
H. L.
,
Cravalho
,
E. G.
, and
Shannon
,
D. C.
,
1989
, “
A Model of Acoustic Transmission in the Respiratory System
,”
IEEE Trans. Biomed. Eng.
,
36
, pp.
925
934
.10.1109/10.35301
27.
Royston
,
T. J.
,
Zhang
,
X.
,
Mansy
,
H. A.
, and
Sandler
,
R. H.
,
2002
, “
Modeling Sound Transmission Through the Pulmonary System and Chest With Application to Diagnosis of a Collapsed Lung
,”
J. Acoust. Soc. Am.
,
111
(
4
), pp.
1931
1946
.10.1121/1.1452742
28.
Siklosi
,
M.
,
Jensen
,
O. E.
,
Tew
,
R. H.
, and
Logg
,
A.
,
2008
, “
Multiscale Modeling of the Acoustic Properties of Lung Parenchyma
,”
ESAIM: Proc.
,
23
, pp.
78
97
.10.1051/proc:082306
29.
Royston
,
T. J.
,
Dai
,
Z.
,
Chaunsali
,
R.
,
Liu
,
Y.
,
Peng
,
Y.
, and
Magin
,
R. L.
,
2011
, “
Estimating Material Viscoelastic Properties Based on Surface Wave Measurements: A Comparison of Techniques and Modeling Assumptions
,”
J. Acoust. Soc. Am.
,
130
(
6
), pp.
4126
4138
.10.1121/1.3655883
30.
Yasar
,
T. K.
,
Royston
,
T. J.
, and
Magin
,
R. L.
,
2013
, “
Wideband MR Elastography for Viscoelasticity Model Identification
,”
Magn. Reson. Med.
,
70
, pp.
479
489
.10.1002/mrm.24495
31.
Kiss
,
M. Z.
,
Varghese
,
T.
, and
Hall
,
T. J.
,
2004
, “
Viscoelastic Characterization of In Vitro Canine Tissue
,”
Phys. Med. Biol.
,
49
(
18
), pp.
4207
4218
.10.1088/0031-9155/49/18/002
32.
Kohandel
,
M.
,
Sivaloganathan
,
S.
,
Tenti
,
G.
, and
Darvish
,
K.
,
2005
, “
Frequency Dependence of Complex Moduli of Brain Tissue Using a Fractional Zener Model
,”
Phys. Med. Biol.
,
50
(
12
), pp.
2799
2806
.10.1088/0031-9155/50/12/005
33.
Sinkus
,
R.
,
Siegmann
,
K.
,
Xydeas
,
T.
,
Tanter
,
M.
,
Claussen
,
C.
, and
Fink
,
M.
,
2007
, “
MR Elastography of Breast Lesions: Understanding the Solid/Liquid Duality Can Improve the Specificity of Contrast-Enhanced MR Mammography
,”
Magn. Reson. Med.
,
58
(
6
), pp.
1135
1144
.10.1002/mrm.21404
34.
Zhang
,
M.
,
Castaneda
,
B.
,
Wu
,
Z.
,
Nigwekar
,
P.
,
Joseph
,
J. V.
,
Rubens
,
D. J.
, and
Parker
,
K. J.
,
2007
, “
Congruence of Imaging Estimators and Mechanical Measurements of Viscoelastic Properties of Soft Tissues
,”
Ultrasound Med. Biol.
,
33
(
10
), pp.
1617
1631
.10.1016/j.ultrasmedbio.2007.04.012
35.
Riek
,
K.
,
Klatt
,
D.
,
Nuzha
,
H.
,
Mueller
,
S.
,
Neumann
,
U.
,
Sack
,
I.
, and
Braun
,
J.
,
2011
, “
Wide-Range Dynamic Magnetic Resonance Elastography
,”
J. Biomech.
,
44
(
7
), pp.
1380
1386
.10.1016/j.jbiomech.2010.12.031
36.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
168
178
.10.1121/1.1908239
37.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
179
191
.10.1121/1.1908241
38.
Schanz
,
M.
,
2001
,
Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach
,
Springer
,
Berlin
.
39.
Bonnet
,
G.
, and
Auriault
,
J. L.
,
1985
, “
Dynamics of Saturated and Deformable Porous Media: Homogenization Theory and Determination of the Solid-Liquid Coupling Coefficients
,”
Physics of Finely Divided Matter
,
Springer
,
Berlin
.
40.
Smeulders
,
D. M. J.
,
1992
, “
On Wave Propagation in Saturated and Partially Saturated Porous Media
,” Ph.D. dissertation, Technische Universiteit Eindhoven, Eindhoven, Netherlands.
41.
Bourbie
,
T.
,
Coussy
,
O.
, and
Zinszner
,
B.
,
1987
,
Acoustics of Porous Media
,
Gulf
,
Houston, TX
.
42.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
,
3rd ed.
,
McGraw-Hill
,
New York
.
43.
Butler
,
J. P.
,
Nakamura
,
M.
,
Sasaki
,
H.
,
Sasaki
,
T.
, and
Takishima
,
T.
,
1986
, “
Poissons' Ratio of Lung Parenchyma and Parenchymal Interaction With Bronchi
,”
Jpn. J. Physiol.
,
36
(
1
), pp.
91
106
.10.2170/jjphysiol.36.91
44.
Lai-Fook
,
S.
, and
Hyatt
,
R.
,
2000
, “
Effects of Age on Elastic Moduli of Human Lungs
,”
J. Appl. Physiol.
,
89
(
1
), pp.
163
168
.
45.
Graff
,
K. F.
,
1991
,
Wave Motion in Elastic Solids
,
Dover
,
New York
.
46.
Hajari
,
A. J.
,
Yablonskiy
,
D. A.
,
Quirk
,
J. D.
,
Sukstanskii
,
A. L.
,
Pierce
,
R. A.
,
Deslée
,
G.
,
Conradi
,
M. S.
, and
Woods
,
J. C.
,
2011
, “
Imaging Alveolar-Duct Geometry During Expiration Via 3He Lung Morphometry
,”
J. Appl. Physiol.
,
110
, pp.
1448
1454
.10.1152/japplphysiol.01352.2010
47.
Plona
,
T. J.
,
1980
, “
Observation of a Second Bulk Compressional Wave in a Porous Medium at Ultrasonic Frequencies
,”
Appl. Phys. Lett.
,
36
, pp.
259
261
.10.1063/1.91445
48.
Lakes
,
R.
,
Yoon
,
H. S.
, and
Katz
,
J. L.
,
1983
, “
Slow Compressional Wave Propagation in Wet Human and Bovine Cortical Bone
,”
Science
,
220
(
4596
), pp.
513
515
.10.1126/science.6836296
49.
von Gierke
,
H. E.
,
Oestreicher
,
H. L.
,
Franke
,
E. K.
,
Parrack
,
H. O.
, and
von Wittern
,
W. W.
,
1952
, “
Physics of Vibrations in Living Tissue
,”
J. Appl. Physiol.
,
4
, pp.
886
900
.
50.
Hajari
,
A. J.
,
Yablonskiy
,
D. A.
,
Sukstanskii
,
A. L.
,
Quirk
,
J. D.
,
Conradi
,
M. S.
, and
Woods
,
J. C.
,
2012
, “
Morphometric Changes in the Human Pulmonary Acinus During Inflation
,”
J. Appl. Physiol.
,
112
, pp.
937
943
.10.1152/japplphysiol.00768.2011
51.
Yen
,
R. T.
,
Fung
,
Y. C.
,
Ho
,
H. H.
, and
Butterman
,
G.
,
1986
, “
Speed of Stress Wave Propagation in Lung
,”
J. Appl. Physiol.
,
61
(
2
), pp.
701
705
.
52.
Zhang
,
X. M.
,
Kinnick
,
R. R.
, and
Greenleaf
,
J. F.
,
2008
, “
Viscoelasticity of Lung Tissue With Surface Wave Method
,”
IEEE Ultrasonics Symposium
(
IUS 2008
), Beijing, November 2–5, pp.
21
23
.10.1109/ULTSYM.2008.0006
53.
Zhang
,
X. M.
,
Qiang
,
B.
,
Urban
,
M. W.
,
Kinnick
,
R. R.
,
Hubmayr
,
R.
, and
Greenleaf
,
J. F.
,
2009
, “
Quantitative Surface Wave Method for Measuring Local Viscoelasticity of Lungs
,”
IEEE International Ultrasonics Symposium
(
IUS 2009
), Rome, September 20–23, pp.
479
482
.10.1109/ULTSYM.2009.5441822
54.
Mariappan
,
Y. K.
,
Glaser
,
K. J.
,
Levin
,
D. L.
,
Vassallo
,
R.
,
Hubmayr
,
R. D.
,
Mottram
,
C.
,
Ehman
,
R. L.
, and
McGee
,
K. P.
, “
Estimation of the Absolute Shear Stiffness of Human Lung Parenchyma Using 1H Spin Echo, Echo Planar MR Elastography
,”
J. Magn. Reson. Imaging
, (in press).10.1002/jmri.24479
You do not currently have access to this content.