In this paper, some known and novel properties of the Cauchy and signaling problems for the one-dimensional time-fractional diffusion-wave equation with the Caputo fractional derivative of order β,1β2 are investigated. In particular, their response to a localized disturbance of the initial data is studied. It is known that, whereas the diffusion equation describes a process where the disturbance spreads infinitely fast, the propagation velocity of the disturbance is a constant for the wave equation. We show that the time-fractional diffusion-wave equation interpolates between these two different responses in the sense that the propagation velocities of the maximum points, centers of gravity, and medians of the fundamental solutions to both the Cauchy and the signaling problems are all finite. On the other hand, the disturbance spreads infinitely fast and the time-fractional diffusion-wave equation is nonrelativistic like the classical diffusion equation. In this paper, the maximum locations, the centers of gravity, and the medians of the fundamental solution to the Cauchy and signaling problems and their propagation velocities are described analytically and calculated numerically. The obtained results for the Cauchy and the signaling problems are interpreted and compared to each other.

References

References
1.
Gorenflo
,
R.
, and
Mainardi
,
F.
,
1997
, “
Fractional Calculus, Integral and Differential Equations of Fractional Order
,”
Fractals and Fractional Calculus in Continuum Mechanics
,
A.
Carpinteri
and
F.
Mainardi
, eds.,
Springer-Verlag
,
Wien, Germany
, pp.
223
276
.
2.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego
, CA.
3.
Nigmatullin
,
R. R.
,
1986
, “
The Realization of the Generalized Transfer Equation in a Medium With Fractal Geometry
,”
Phys. Stat. Sol. B
,
133
(1), pp.
425
430
.10.1002/pssb.2221330150
4.
Mainardi
,
F.
1995
, “
Fractional Diffusive Waves in Viscoelastic Solids
,”
IUTAM Symposium—Nonlinear Waves in Solids
,
J. L.
Wegner
and
F. R.
Norwood
, eds.,
ASME/AMR
,
Fairfield, NJ
, pp.
93
97
.
5.
Pipkin
,
A. C.
,
1986
,
Lectures on Viscoelastic Theory
,
Springer-Verlag
,
New York
.
6.
Kreis
,
A.
, and
Pipkin
,
A. C.
,
1986
, “
Viscoelastic Pulse Propagation and Stable Probability Distributions
,”
Quart. Appl. Math.
,
44
, pp.
353
360
.
7.
Mainardi
,
F.
,
1994
, “
On the Initial Value Problem for the Fractional Diffusion-Wave Equation
,”
Waves and Stability in Continuous Media
,
S.
Rionero
and
T.
Ruggeri
, eds.,
World Scientific
,
Singapore
, pp.
246
251
.
8.
Mainardi
,
F.
,
1995
, “
The Time Fractional Diffusion-Wave Equation
,”
Radiofisika
,
38
, pp.
20
36
.
9.
Mainardi
,
F.
,
1996
, “
Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena
,”
Chaos Solitons Fract.
,
7
(9), pp.
1461
1477
.10.1016/0960-0779(95)00125-5
10.
Mainardi
,
F.
,
1996
, “
The Fundamental Solutions for the Fractional Diffusion-Wave Equation
,”
Appl. Math. Lett.
,
9
(6), pp.
23
28
.10.1016/0893-9659(96)00089-4
11.
Mainardi
,
F.
,
1997
, “
Fractional Calculus, Some Basic Problems in Continuum and Statistical Mechanics
,”
Fractals and Fractional Calculus in Continuum Mechanics
,
A.
Carpinteri
and
F.
Mainardi
, eds.,
Springer-Verlag
,
Wien, Germany
, pp.
291
348
.
12.
Wyss
,
W.
,
1986
, “
Fractional Diffusion Equation
,”
J. Math. Phys.
,
27
(11), pp.
2782
2785
.10.1063/1.527251
13.
Schneider
,
W. R.
, and
Wyss
,
W.
,
1989
, “
Fractional Diffusion and Wave Equations
,”
J. Math. Phys.
,
30
(1), pp.
134
144
.10.1063/1.528578
14.
Fujita
,
Y.
,
1990
, “
Integrodifferential Equation Which Interpolates the Heat Equation and the Wave Equation, Part I
,”
Osaka J. Math.
,
27
(2), pp.
309
321
. Available at: http://projecteuclid.org/euclid.ojm/1200782311.
15.
Fujita
,
Y.
,
1990
, “
Integrodifferential Equation Which Interpolates the Heat Equation and the Wave Equation, Part II
,”
Osaka J. Math.
,
27
, pp.
797
804
. Available at: http://projecteuclid.org/euclid.ojm/1200782677.
16.
Prüss
,
J.
,
1993
,
Evolutionary Integral Equations and Applications
,
Birkhäuser-Verlag
,
Basel, Switzerland
.
17.
Mainardi
,
F.
,
Luchko
,
Y.
, and
Pagnini
,
G.
,
2001
, “
The Fundamental Solution of the Space-Time Fractional Diffusion Equation
,”
Fract. Calc. Appl. Anal.
,
4
(2), pp.
153
192
.
18.
Mainardi
,
F.
,
Pagnini
,
G.
, and
Saxena
,
R. K.
,
2005
, “
Fox H Functions in Fractional Diffusion
,”
J. Comp. Appl. Math.
,
178
(1-2), pp.
321
331
.10.1016/j.cam.2004.08.006
19.
Luchko
,
Y.
,
2009
, “
Boundary Value Problems for the Generalized Time-Fractional Diffusion Equation of Distributed Order
,”
Fract. Calc. Appl. Anal.
,
12
(4), pp.
409
422
.
20.
Luchko
,
Y.
,
2010
, “
Some Uniqueness and Existence Results for the Initial-Boundary-Value Problems for the Generalized Time-Fractional Diffusion Equation
,”
Comput. Math. Appl.
,
59
(5), pp.
1766
1772
.10.1016/j.camwa.2009.08.015
21.
Luchko
,
Y.
,
2011
, “
Initial-Boundary-Value Problems for the Generalized Multi-Term Time-Fractional Diffusion Equation
,”
J. Math. Anal. Appl.
,
374
(2), pp.
538
548
.10.1016/j.jmaa.2010.08.048
22.
Luchko
,
Y.
,
2012
, “
Initial-Boundary-Value Problems for the One-Dimensional Time-Fractional Diffusion Equation
,”
Fract. Calc. Appl. Anal.
,
15
(1), pp.
141
160
.10.2478/s13540-012-0010-7
23.
Luchko
,
Y.
,
2013
, “
Fractional Wave Equation and Damped Waves
,”
J. Math. Phys.
,
54
(3), p.
031505
.
24.
Luchko
,
Y.
, and
Punzi
,
A.
,
2011
, “
Modeling Anomalous Heat Transport in Geothermal Reservoirs Via Fractional Diffusion Equations
,”
Int. J. Geomath.
,
1
(2), pp.
257
276
.10.1007/s13137-010-0012-8
25.
Buckwar
,
E.
, and
Luchko
,
Y.
,
1998
, “
Invariance of a Partial Differential Equation of Fractional Order Under the Lie Group of Scaling Transformations
,”
J. Math. Anal. Appl.
,
227
(1), pp.
81
97
.10.1006/jmaa.1998.6078
26.
Engler
,
H.
,
1997
, “
Similarity Solutions for a Class of Hyperbolic Integrodifferential Equations
,”
Diff. Integral Eq.
,
10
(5), pp.
815
840
. Available at: http://projecteuclid.org/euclid.die/1367438621.
27.
Fujita
,
Y.
,
1990
, “
Cauchy Problems of Fractional Order and Stable Processes
,”
Japan J. Appl. Math.
,
7
(3), pp.
459
476
.10.1007/BF03167854
28.
Gorenflo
,
R.
,
Luchko
,
Y.
, and
Mainardi
,
F.
,
1999
, “
Analytical Properties and Applications of the Wright Function
,”
Fract. Calc. Appl. Anal.
,
2
(4), pp.
383
414
.
29.
Gorenflo
,
R.
,
Luchko
,
Y.
, and
Mainardi
,
F.
,
2000
, “
Wright Functions as Scale-Invariant Solutions of the Diffusion-Wave Equation
,”
J. Comput. Appl. Math.
,
118
(1-2), pp.
175
191
.10.1016/S0377-0427(00)00288-0
30.
Luchko
,
Y.
, and
Gorenflo
,
R.
,
1998
, “
Scale-Invariant Solutions of a Partial Differential Equation of Fractional Order
,”
Fract. Calc. Appl. Anal.
,
3
(1), pp.
63
78
.
31.
Mainardi
,
F.
, and
Tomirotti
,
M.
,
1997
, “
Seismic Pulse Propagation With Constant Q and Stable Probability Distributions
,”
Annali di Geofisica
,
40
(5), pp.
1311
1328
.
32.
Luchko
,
Y.
,
Mainardi
,
F.
, and
Povstenko
,
Y.
,
2013
, “
Propagation Speed of the Maximum of the Fundamental Solution to the Fractional Diffusion-Wave Equation
,”
Comput. Math. Appl.
,
66
(5), pp.
774
784
.10.1016/j.camwa.2013.01.005
33.
Luchko
,
Y.
, and
Mainardi
,
F.
,
2013
, “
Some Properties of the Fundamental Solution to the Signalling Problem for the Fractional Diffusion-Wave Equation
,”
Cent. Eur. J. Phys.
11
(6), pp.
666
675
.10.2478/s11534-013-0247-8
34.
Luchko
,
Y.
,
2009
, “
Maximum Principle for the Generalized Time-Fractional Diffusion Equation
,”
J. Math. Anal. Appl.
,
351
(1), pp.
218
223
.10.1016/j.jmaa.2008.10.018
35.
Luchko
,
Y.
,
2011
, “
Maximum Principle and Its Application for the Time-Fractional Diffusion Equations
,”
Fract. Calc. Appl. Anal.
,
14
(1), pp.
110
124
.10.2478/s13540-011-0008-6
36.
Gorenflo
,
R.
,
Loutchko
,
J.
, and
Luchko
,
Y.
,
2002
, “
Computation of the Mittag–Leffler Function and Its Derivatives
,”
Fract. Calc. Appl. Anal.
,
5
(4), pp.
491
518
.
37.
Luchko
,
Y.
, 2008, “
Algorithms for Evaluation of the Wright Function for the Real Arguments' Values
,”
Fract. Calc. Appl. Anal.
,
11
(1), pp.
57
75
.
38.
Mainardi
,
F.
,
2010
,
Fractional Calculus and Waves in Linear Viscoelasticity
,
Imperial College Press
,
London
.
You do not currently have access to this content.