This paper develops new fractional calculus models for wave propagation. These models permit a different attenuation index in each coordinate to fully capture the anisotropic nature of wave propagation in complex media. Analytical expressions that describe power law attenuation and anomalous dispersion in each direction are derived for these fractional calculus models.

References

References
1.
Meerschaert
,
M. M.
,
Mortensen
,
J.
, and
Wheatcraft
,
S. W.
,
2006
, “
Fractional Vector Calculus for Fractional Advection-Dispersion
,”
Phys. A
,
367
, pp.
181
190
.10.1016/j.physa.2005.11.015
2.
Meerschaert
,
M. M.
, and
Sikorskii
,
A.
,
2012
,
Stochastic Models for Fractional Calculus
,
De Gruyter
,
Berlin
.
3.
Samko
,
S. A.
,
Kilbas
,
A.
, and
Marichev
,
O.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach
,
London
.
4.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
,
2000
,
Fundamentals of Acoustics
,
4th. ed.
,
Wiley
,
New York
, p.
119
.
5.
Gorenflo
,
R.
,
Luchko
,
Yu.
, and
Mainardi
,
F.
,
2000
, “
Wright Functions as Scale-Invariant Solutions of the Diffusion-Wave Equation
,”
J. Comput. Appl. Math.
,
118
, pp.
175
191
.10.1016/S0377-0427(00)00288-0
6.
Wear
,
K. A.
,
2001
, “
A Stratified Model to Predict Dispersion in Trabecular Bone
,”
IEEE Trans. Ultrason. Ferroelec. Freq. Control
,
48
(
4
), pp.
1079
1083
.10.1109/58.935726
7.
Nicholson
,
P. H. F.
,
Haddaway
,
M. J.
, and
Davie
,
M. W. J.
,
1994
, “
The Dependence of Ultrasonic Properties on Orientation in Human Vertebral Bone
,”
Phys. Med. Biol.
,
39
(
6
), pp.
1013
1024
.10.1088/0031-9155/39/6/007
8.
Anderson
,
C. C.
,
Bauer
,
A. Q.
,
Holland
,
M. R.
,
Pakula
,
M.
,
Wielki
,
K.
,
Laugier
,
P.
,
Bretthorst
,
G. L.
, and
Miller
,
J. G.
,
2010
, “
Inverse Problems in Cancellous Bone: Estimation of the Ultrasonic Properties of Fast and Slow Waves Using Bayesian Probability Theory
,”
J. Acoust. Soc. Am.
,
128
(
5
), pp.
2940
2948
.10.1121/1.3493441
9.
Marutyan
,
K. R.
,
Holland
,
M. R.
, and
Miller
,
J. G.
,
2006
, “
Anomalous Negative Dispersion in Bone Can Result From the Interference of Fast and Slow Waves
,”
J. Acoust. Soc. Am.
,
120
(
5
), pp.
EL55
EL61
.10.1121/1.2357187
10.
Haïat
,
G.
,
Lhémery
,
A.
,
Renaud
,
F.
,
Padilla
,
F.
,
Laugier
,
P.
, and
Naili
,
S.
,
2008
, “
Velocity Dispersion in Trabecular Bone: Influence of Multiple Scattering and of Absorption
,”
J. Acoust. Soc. Am.
,
124
(
6
), pp.
4047
4058
.10.1121/1.3003077
11.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
,
2000
,
Fundamentals of Acoustics
,
4th ed.
,
Wiley
,
New York
, pp.
211
212
.
12.
Chen
,
W.
, and
Holm
,
S.
,
2004
, “
Fractional Laplacian Time-Space Models for Linear and Nonlinear Lossy Media Exhibiting Arbitrary Frequency Power-Law Dependency
,”
J. Acoust. Soc. Am.
,
115
, pp.
1424
1430
.10.1121/1.1646399
13.
Treeby
,
B. E.
, and
Cox
,
B. T.
,
2010
, “
Modeling Power Law Absorption and Dispersion for Acoustic Propagation Using the Fractional Laplacian
,”
J. Acoust. Soc. Am.
,
127
, pp.
2741
2748
.10.1121/1.3377056
14.
Magin
,
R. L.
,
Abdullah
,
O.
,
Baleanu
,
D.
, and
Zhou
,
X. J.
,
2008
, “
Anomalous Diffusion Expressed Through Fractional Order Differential Operators in the Bloch-Torrey Equation
,”
J. Magn. Reson.
,
190
, pp.
255
270
.10.1016/j.jmr.2007.11.007
15.
GadElkarim
,
J. J.
,
Magin
,
R. M.
,
Meerschaert
,
M. M.
,
Capuani
,
S.
,
Palombo
,
M.
,
Kumar
,
A.
, and
Leow
,
A. D.
,
2013
, “
Directional Behavior of Anomalous Diffusion Expressed Through a Multidimensional Fractionalization of the Bloch-Torrey Equation
,” Special Issue on Fractional-Order Circuits and Systems,
IEEE J. Emerging Select. Topics Circuits Syst.
,
3
(
3
), pp.
432
441
.10.1109/JETCAS.2013.2265795
16.
Kelly
,
J. F.
,
McGough
,
R. J.
, and
Meerschaert
,
M. M.
,
2008
, “
Time-Domain 3D Green's Functions for Power Law Media
,”
J. Acoust. Soc. Am.
,
124
(
5
), pp.
2861
2872
.10.1121/1.2977669
You do not currently have access to this content.