The two-degree-of-freedom (2DOF) hypersonic flutter dynamical system has strong aeroelastic nonlinearities, and it is very difficult to obtain a more precise mathematical model. By considering varying learning rate and σ-modification factor, a novel Levenberg– Marquardt (L–M) method is proposed, based on which, an online fuzzy approximation scheme for 2DOF hypersonic flutter model is established without any human knowledge. Compared with the standard L–M method, the proposed method can obtain faster converge speed and avoid parameter drift. Numerical simulations approve the advantages of the proposed scheme.

References

References
1.
Xie
,
C. C.
,
Leng
,
J. Z.
, and
Yang
,
C.
,
2008
, “
Geometrical Nonlinear Aeroelastic Stability Analysis of a Composite High-Aspect-Ratio Wing
,”
Shock Vib.
,
15
(
3
), pp.
325
333
.10.1155/2008/957561
2.
Yang
,
Y. R.
,
1995
, “
KBM Method of Analyzing Limit Cycle Flutter of a Wing With an External Store and Comparison With a Wind-Tunnel Test
,”
J. Sound Vib.
,
187
(
2
), pp.
271
280
.10.1006/jsvi.1995.0520
3.
Vio
,
G. A.
, and
Cooper
,
J. E.
,
2005
, “
Limit Cycle Oscillation Prediction for Aeroelastic Systems With Discrete Bilinear Stiffness
,”
Int. J. Appl. Math. Mech.
,
1
(
4
), pp.
100
119
.
4.
Dimitriadis
,
G.
,
2008
, “
Bifurcation Analysis of Aircraft With Structural Nonlinearity and Freeplay Using Numerical Continuation
,”
J. Aircr.
,
45
(
3
), pp.
893
905
.10.2514/1.28759
5.
Dessi
,
D.
, and
Mastroddi
,
F.
,
2004
, “
Limit-Cycle Stability Reversal Via Singular Perturbation and Wing-Flap Flutter
,”
J. Fluids Struct.
,
19
(
6
), pp.
765
783
.10.1016/j.jfluidstructs.2004.04.010
6.
Chen
,
Y. M.
, and
Liu
,
J. K.
,
2010
, “
Homotopy Analysis Method for Limit Cycle Oscillations of an Airfoil With Cubic Nonlinearities
,”
J. Vib. Control
,
16
(
2
), pp.
163
179
.10.1177/1077546308097268
7.
Bhoir
N.
, and
Singh
,
S. N.
,
2004
, “
Output Feedback Nonlinear Control of an Aeroelastic System With Unsteady Aerodynamics
,”
Aerosp. Sci. Technol.
,
8
(
3
), pp.
195
205
.10.1016/j.ast.2003.10.009
8.
McEver
,
M. A.
,
Ardelean
,
E. V.
,
Cole
,
D. G.
, and
Clark
,
R. L.
,
2007
, “
Active Control and Closed-Loop Identification of Flutter Instability in Typical Section Airfoil
,”
J. Guid. Control Dyn.
,
30
(
3
), pp.
733
740
.10.2514/1.26335
9.
Han
,
J. H.
,
Tani
,
J. J.
, and
Qiu
,
J. H.
,
2006
, “
Active Flutter Suppression of a Lifting Surface Using Piezoelectric Actuation and Modern Control Theory
,”
J. Sound Vib.
,
291
(
3
), pp.
706
722
.10.1016/j.jsv.2005.06.029
10.
McNamara
,
J. J.
, and
Friedmann
,
P. P.
,
2007
, “
Aeroelastic and Aerothermoelastic Analysis of Hypersonic Vehicles-Current Status and Future Trends
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Honolulu, HI, April 23–26,
AIAA
Paper No. 2007‐2013.10.2514/6.2007-2013
11.
Thuruthimattam
,
B. J.
,
Friedmann
,
P. P.
,
McNamara
,
J. J.
, and
Powell
,
K. G.
,
2003
, “
Modeling Approaches to Hypersonic Aerothermoelasticity With Application to Reusable Launch Vehicles
,”
44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Norfolk, VA, April 7–10,
AIAA
Paper No. 2003-1967.10.2514/6.2003-1967
12.
Abbas
,
L. K.
,
Qian
,
C.
,
Marzocca
,
P.
,
Zafer
,
G.
, and
Mostafa
,
A.
,
2008
, “
Active Aerothermoelastic Control of Hypersonic Double-Wedge Lifting Surface
,”
Chin. J. Aeronaut.
,
21
(
1
), pp.
8
18
.10.1016/S1000-9361(08)60002-3
13.
Librescu
,
L.
, and
Chiocchia
,
G.
,
2003
, “
Implications of Cubic Physical Aerodynamic Non-Linearities on the Character of the Flutter Instability Boundary
,”
Int. J. Non-Linear Mech.
,
38
(
2
), pp.
173
199
.10.1016/S0020-7462(01)00054-3
14.
Zheng
,
G. Y.
, and
Yang
,
Y. R.
,
2008
, “
Chaotic Motions and Limit Cycle Flutter of Two-Dimensional Wing in Supersonic Flow
,”
Acta Mech. Solida Sin.
,
21
(
5
), pp.
441
448
.10.1007/s10338-008-0853-y
15.
Ding
,
Q.
, and
Wang
,
D. L.
,
2005
, “
Flutter Control of a Two-Dimensional Airfoil Using Wash-Out Filter Technique
,”
Chin. J. Aeronaut.
,
18
(
2
), pp.
130
137
.10.1016/S1000-9361(11)60317-8
16.
Heeg
,
J.
,
Gilbert
,
M. G.
, and
Pototzky
,
A. S.
,
1993
, “
Active Control of Aerothermoelastic Effects for a Conceptual Hypersonic Aircraft
,”
J. Aircr.
,
30
(
4
), pp.
453
458
.10.2514/3.56890
17.
Takagi
,
T.
, and
Sugeno
,
M.
,
1985
, “
Fuzzy Identification of Systems and Its Applications to Modeling and Control
,”
IEEE Trans. Syst., Man Cybern.
,
15
(
1
), pp.
116
132
.10.1109/TSMC.1985.6313399
18.
Passino
,
K. M.
,
2005
,
Biomimicry for Optimization, Control, and Automation
,
Springer-Verlag
,
London
.
19.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
,
1994
, “
Training Feedforward Networks With the Marquardt Algorithm
,”
IEEE Trans. Neural Networks
,
5
(
6
), pp.
989
993
.10.1109/72.329697
20.
Chan
,
L. W.
, and
Szeto
,
C. C.
,
1999
, “
Training Recurrent Network With Block-Diagonal Approximated Levenberg-Marquardt Algorithm
,”
International Joint Conference on Neural Networks
(
IJCNN '99
), Washington, DC, July 10–16, pp. 1521–1526.10.1109/IJCNN.1999.832595
21.
Chen
,
T. C.
,
Han
,
D. J.
,
Au
,
F. T. K.
, and
Tham
,
L. G.
,
2003
, “
Acceleration of Levenberg-Marquardt Training of Neural Networks With Variable Decay Rate
,”
International Joint Conference on Neural Networks
(
IJCNN 2003
), Portland, OR, July 20–24, pp. 1873–1878.10.1109/IJCNN.2003.1223693
22.
Suratgar
,
A. A.
,
Tavakoli
,
M. B.
, and
Hoseinabadi
,
A.
,
2005
, “
Modified Levenberg-Marquardt Method for Neural Networks Training
,”
World Acad. Sci., Eng. Technol.
,
6
, pp.
46
48
.
23.
Wang
,
Y. H.
,
Wu
,
Q. X.
,
Jiang
,
C. S.
,
Xue
,
Y. L.
, and
Fang
,
W.
,
2009
, “
Modified Levenberg-Marquardt Method for Rössler Chaotic System Fuzzy Modeling Training
,”
Int. J. Mod. Phys. B
,
23
(
24
), pp.
4953
4961
.10.1142/S0217979209053278
24.
Ashley
,
H.
, and
Zartarian
,
G.
,
1956
, “
Piston Theory—A New Aerodynamic Tool for the Aeroelastician
,”
J. Aeronaut. Sci.
,
23
(
12
), pp.
1109
1118
.10.2514/8.3740
You do not currently have access to this content.