An exact closed-form solution of free vibration of a simply supported and multilayered one-dimensional (1D) quasi-crystal (QC) plate is derived using the pseudo-Stroh formulation and propagator matrix method. Natural frequencies and mode shapes are presented for a homogenous QC plate, a homogenous crystal plate, and two sandwich plates made of crystals and QCs. The natural frequencies and the corresponding mode shapes of the plates show the influence of stacking sequence on multilayered plates and the different roles phonon and phason modes play in dynamic analysis of QCs. This work could be employed to further expand the applications of QCs especially if used as composite materials.

References

References
1.
Shechtman
,
D.
,
Blech
,
I.
,
Gratias
,
D.
, and
Cahn
,
J. W.
,
1984
, “
Metallic Phase With Long-Range Orientational Order and No Translational Symmetry
,”
Phys. Rev. Lett.
,
53
(
20
), pp.
1951
1953
.10.1103/PhysRevLett.53.1951
2.
Louzguine-Luzgin
,
D. V.
, and
Inoue
,
A.
,
2008
, “
Formation and Properties of Quasicrystals
,”
Annu. Rev. Mater. Res.
,
38
, pp.
403
423
.10.1146/annurev.matsci.38.060407.130318
3.
Hu
,
C.
,
Wang
,
R.
, and
Ding
,
D. H.
,
2000
, “
Symmetry Groups, Physical Property Tensors, Elasticity and Dislocations in Quasicrystals
,”
Rep. Prog. Phys.
,
63
(
1
), pp.
1
39
.10.1088/0034-4885/63/1/201
4.
Ding
,
D. H.
,
Yang
,
W. G.
,
Hu
,
C. Z.
, and
Wang
,
R. H.
,
1993
, “
Generalized Elasticity Theory of Quasicrystals
,”
Phys. Rev. B
,
48
(
10
), pp.
7003
7010
.10.1103/PhysRevB.48.7003
5.
Fan
,
T. Y.
,
2011
,
Mathematical Theory of Elasticity of Quasicrystals and Its Applications
,
Springer
,
Heidelberg
, Germany.
6.
Fan
,
T. Y.
,
2013
, “
Mathematical Theory and Methods of Mechanics of Quasicrystalline Materials
,”
Engineering
,
5
(
4
), pp.
407
448
.10.4236/eng.2013.54053
7.
Fan
,
T. Y.
,
Tang
,
Z. Y.
, and
Chen
,
W. Q.
,
2012
, “
Theory of Linear, Nonlinear and Dynamic Fracture for Quasicrystals
,”
Eng. Fract. Mech.
,
82
, pp.
185
194
.10.1016/j.engfracmech.2011.12.009
8.
Farzbod
,
F.
, and
Leamy
,
M. J.
,
2011
, “
Analysis of Bloch's Method in Structures With Energy Dissipation
,”
ASME J. Vib. Acoust.
,
133
(
5
), p.
051010
.10.1115/1.4003943
9.
Sladek
,
J.
,
Sladek
,
V.
, and
Pan
,
E.
,
2013
, “
Bending Analyses of 1D Orthorhombic Quasicrystal Plates
,”
Int. J. Solids Struct.
,
50
(
24
), pp.
3975
3983
.10.1016/j.ijsolstr.2013.08.006
10.
Chalak
,
H. D.
,
Chakrabarti
,
A.
,
Iqbal
,
M. A.
, and
Sheikh
,
A. H.
,
2013
, “
Free Vibration Analysis of Laminated Soft Core Sandwich Plates
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
011013
.10.1115/1.4007262
11.
Yan
,
Z. Z.
,
Zhang
,
Ch.
, and
Wang
,
Y. S.
,
2013
, “
Elastic Wave Localization in Layered Phononic Crystals With Fractal Superlattices
,”
ASME J. Vib. Acoust.
,
35
(
4
), p.
041004
.10.1115/1.4023818
12.
Pan
,
E.
,
2001
, “
Exact Solution for Simply Supported and Multilayered Magneto-Electro-Elastic Plates
,”
ASME J. Appl. Mech.
,
68
(
4
), pp.
608
618
.10.1115/1.1380385
13.
Pan
,
E.
,
1997
, “
Static Green's Functions in Multilayered Half Spaces
,”
Appl. Math. Model.
,
21
(8), pp.
509
521
.10.1016/S0307-904X(97)00053-X
14.
Wang
,
R. H.
,
Yang
,
W. G.
,
Hu
,
C. Z.
, and
Ding
,
D. H.
,
1997
, “
Point and Space Groups and Elastic Behaviors of One-Dimensional Quasicrystals
,”
J. Phys.: Condens. Matter
,
9
(
11
), pp.
2411
2422
.10.1088/0953-8984/12/31/201
15.
Bak
,
P.
,
1985
, “
Symmetry, Stability and Elastic Properties of Icosahedral Incommensurate Crystals
,”
Phys. Rev. B
,
32
(
9
), pp.
5764
5772
.10.1103/PhysRevB.32.5764
16.
Lubensky
,
T. C.
,
Ramaswamy
,
S.
, and
Joner
,
J.
,
1985
, “
Hydrodynamics of Icosahedral Quasicrystals
,”
Phys. Rev. B
,
32
(
11
), pp.
7444
7452
.10.1103/PhysRevB.32.7444
17.
Stroh
,
A. N.
,
1958
, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
,
3
(
30
), pp.
625
646
.10.1080/14786435808565804
18.
Lee
,
J. S.
, and
Jiang
,
L. Z.
,
1996
, “
Exact Electroelastic Analysis of Piezoelectric Laminae Via State Space Approach
,”
Int. J. Solids Struct.
,
33
(
7
), pp.
977
990
.10.1016/0020-7683(95)00083-6
19.
Pan
,
E.
, and
Heyliger
,
P. R.
,
2002
, “
Free Vibrations of Simply Supported and Multilayered Magneto-Electro-Elastic Plates
,”
J. Sound Vib.
,
252
(
3
), pp.
429
442
.10.1006/jsvi.2001.3693
20.
Fan
,
T. Y.
,
Xie
,
L. Y.
,
Fan
,
L.
, and
Wang
,
Q. Z.
,
2011
, “
Interface of Quasicrystals and Crystal
,”
Chin. Phys. B
,
20
(
7
), p.
076102
.10.1088/1674-1056/20/7/076102
21.
Yang
,
L.
,
Gao
,
Y.
,
Pan
,
E.
, and
Waksmanski
,
N.
,
2014
, “
An Exact Solution for a Multilayered Two-Dimensional Decagonal Quasicrystal Plate
,”
Int. J. Solids Struct.
,
51
(9), pp.
1737
1749
.10.1016/j.ijsolstr.2014.01.018
You do not currently have access to this content.