Higher-order spectral (HOS) analysis tools are employed to extract the nonlinear dynamic response features of elastic and laminated plates by using both physics-based mechanical plate models and experimental data. Bispectral and trispectral densities are computed to highlight the presence and relative importance of quadratic and cubic nonlinearities. The former are associated with the presence of asymmetry either in the excitation or in the mechanical response of predeflected plates while the latter are due to midplane stretching effects. Besides the detection of these structural nonlinearities in perfect (baseline) fully clamped plates, the changes of such nonlinearities induced by the presence of small inertial imperfections (i.e., lumped masses) are identified and exploited to localize the imperfections. The numerical and experimental investigations are carried out both on isotropic and laminated composite plates subject to Gaussian white noise excitation. The effectiveness of the HOS-based procedure for detection of the nonlinearities is fully demonstrated for both types of plates.

References

References
1.
Ewins
,
D. J.
,
2001
,
Modal Testing: Theory, Practice And Application
(Mechanical Engineering Research Studies: Engineering Dynamics Series),
Wiley-Interscience
,
New York
.
2.
Chen
,
S. L.
,
Liang
,
J. W.
, and
Ho
,
K. C.
,
2012
, “
Parametric Identification of Nonlinear Systems by Haar Wavelets: Theory and Experimental Validation
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031005
.10.1115/1.4006229
3.
Falco
,
M.
,
Liu
,
M.
,
Nguyen
,
S. H.
, and
Chelidze
,
D.
,
2014
, “
Nonlinear System Identification and Modeling of a New Fatigue Testing Rig Based on Inertial Forces
,”
ASME J. Vib. Acoust.
,
136
(
4
), p.
041001
.10.1115/1.4027317
4.
Nikias
,
C. L.
, and
Petropulu
,
A. P.
,
1993
,
Higher-Order Spectra Analysis: A Nonlinear Signal Processing Framework
,
PTR Prentice Hall
,
Englewood Cliffs, NJ
.
5.
Brillinger
,
D. R.
,
1965
, “
An Introduction to Polyspectra
,”
Ann. Math. Stat.
,
36
(
5
), pp.
1351
1374
.10.1214/aoms/1177699896
6.
Brillinger
,
D. R.
, and
Rosenblatt
,
M.
,
1967
,
Spectral Analysis of Time Series
,
Wiley
,
New York
.
7.
Balachandran
,
B.
, and
Khan
,
K. A.
,
1996
, “
Spectral Analyses of Non-Linear Interactions
,”
Mech. Syst. Signal Process.
,
10
(
6
), pp.
711
727
.10.1006/mssp.1996.0048
8.
Hajj
,
M. R.
,
Nayfeh
,
A. H.
, and
Popovic
,
P.
,
1995
, “
Identification of Nonlinear Systems Parameters Using Polyspectral Measurements and Analysis
,”
ASME 15th Biennial Conference on Mechanical Vibration and Noise
, Boston, MA, September 17–21.
9.
Hajj
,
M. R.
,
Fung
,
J.
,
Nayfeh
,
A. H.
, and
Fahey
,
S. F.
,
2000
, “
Damping Identification Using Perturbation Techniques and Higher-Order Spectra
,”
Nonlinear Dyn.
,
23
(
2
), pp.
189
203
.10.1023/A:1008335522973
10.
Marzocca
,
P.
,
Nichols
,
J. M.
, and
Milanese
,
A.
,
2009
, “
An Analytical Formulation of the Auto-Bispectral Densities for Multiple Degree-of-Freedom Systems
,”
J. Eng. Math.
,
67
(
4
), pp.
351
367
.10.1007/s10665-009-9349-0
11.
Marzocca
,
P.
,
Nichols
,
J. M.
, and
Milanese
,
A.
,
2009
, “
The Trispectrum for Gaussian Driven, Multiple Degree-of-Freedom, Non-Linear Structures
,”
Int. J. Non-Linear Mech.
,
44
(
4
), pp.
404
416
.10.1016/j.ijnonlinmec.2009.01.008
12.
Marzocca
,
P.
,
Nichols
,
J. M.
, and
Milanese
,
A.
,
2008
, “
On the Use of the Auto-Bispectral Density for Detecting Quadratic Nonlinearity in Structural Systems
,”
J. Sound Vib.
,
312
(
4–5
), pp.
726
735
.10.1016/j.jsv.2007.11.032
13.
Lacarbonara
,
W.
, and
Pasquali
,
M.
,
2011
, “
A Geometrically Exact Formulation for Thin Multi-Layered Laminated Composite Plates: Theory and Experiment
,”
Compos. Struct.
,
93
(
7
), pp.
1649
1663
.10.1016/j.compstruct.2010.12.005
14.
Hickey
,
D.
,
Worden
,
K.
,
Platten
,
M. F.
,
Wright
,
J. R.
, and
Cooper
,
J. E.
,
2009
, “
Higher-Order Spectra for Identification of Nonlinear Modal Coupling
,”
Mech. Syst. Signal Process.
,
23
(
4
), pp.
1037
1061
.10.1016/j.ymssp.2008.10.008
15.
Lacarbonara
,
W.
,
2013
,
Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling
,
Springer
,
New York
.
16.
Pasquali
,
M.
,
2010
, “
Geometrically Exact Models of Thin Plates Towards Nonlinear Dynamic System Identification Via Higher-Order Spectral Approach
,” M.S. thesis, La Sapienza University of Rome, Rome, Italy.
17.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
1993
,
Engineering Applications of Correlation and Spectral Analysis
,
Wiley
,
New York
.
18.
Lacarbonara
,
W.
, and
Camillacci
,
R.
,
2004
, “
Nonlinear Normal Modes of Structural Systems Via Asymptotic Approach
,”
Int. J. Solids Struct.
,
41
(
20
), pp.
5565
5594
.10.1016/j.ijsolstr.2004.04.029
19.
Sohn
,
H.
,
Farrar
,
C. R.
,
Hemez
,
F. M.
,
Shunk
,
D. D.
,
Stinemates
,
D. W.
,
Nadler
,
B. R.
, and
Czarnecki
,
J. J.
,
2004
, “
A Review of Structural Health Monitoring Literature: 1996-2001
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-13976-MS.
20.
Subba
,
T.
, and
Gabr
,
M. M.
,
1984
,
An Introduction to Bispectral Analysis and Bilinear Time Series Models
(Lecture Notes in Statistics), Vol.
24
,
Springer-Verlag
,
Berlin, Germany
.
21.
Dalle Molle
,
J. W.
, and
Hinich
,
M. J.
,
1989
, “
The Trispectrum
,”
Workshop on Higher-Order Spectral Analysis
, Vail, CO, June 28–30, pp.
68
72
. 10.1109/HOSA.1989.735272
22.
Ma
,
C.
, and
Huang
,
C.
,
2004
, “
Experimental Whole-Field Interferometry for Transverse Vibration of Plates
,”
J. Sound Vib.
,
271
(
3–5
), pp.
493
506
.10.1016/S0022-460X(03)00276-1
You do not currently have access to this content.