In this work, we present a comprehensive investigation of the time delay absorber effects on the control of a dynamical system represented by a cantilever beam subjected to tuned excitation forces. Cantilever beam is one of the most widely used system in too many engineering applications, such as mechanical and civil engineering. The main aim of this work is to control the vibration of the beam at simultaneous internal and combined resonance condition, as it is the worst resonance case. Control is conducted via time delay absorber to suppress chaotic vibrations. Time delays often appear in many control systems in the state, in the control input, or in the measurements. Time delay commonly exists in various engineering, biological, and economical systems because of the finite speed of the information processing. It is a source of performance degradation and instability. Multiple time scale perturbation method is applied to obtain a first order approximation for the nonlinear differential equations describing the system behavior. The different resonance cases are reported and studied numerically. The stability of the steady-state solution at the selected worst resonance case is investigated applying Runge–Kutta fourth order method and frequency response equations via Matlab 7.0 and Maple11. Time delay absorber is effective, but within a specified range of time delay. It is the critical factor in selecting such absorber. Time delay absorber is better than the ordinary one as from the effectiveness point of view. The effects of the different absorber parameters on the system behavior and stability are studied numerically. A comparison with the available published work showed a close agreement with some previously published work.

References

References
1.
Mead
,
J. D.
,
1988
,
Passive Vibration Control
,
Wiley
,
Chichester, UK
.
2.
Meirovitch
,
L.
,
2001
,
Fundamental of Vibrations
,
McGraw-Hill
,
New York
.
3.
Eissa
,
M.
,
1999
, “
Vibration Control of Non-Linear Mechanical System Via a Neutralizer
,”
Faculty of Electronic Engineering
,
Menouf, Egypt
, Electronic Bulletin No. 16.
4.
Morgan
,
R. A.
, and
Wang
,
R. W.
,
2002
, “
An Active Passive Piezoelectric Absorber for Structural Vibration Control Under Harmonic Excitations With Time-Varying Frequency, Part 1: Algorithm Development and Analysis
,”
ASME J. Vib. Acoust.
,
124
(
1
), pp.
77
83
.10.1115/1.1419201
5.
Aida
,
T.
,
Kawazoe
,
K.
, and
Toda
,
S.
,
1995
, “
Vibration Control of Plates by Plate-Type Dynamics Vibration Absorber
,”
ASME J. Vib. Acoust.
,
117
(
3A
), pp.
332
338
.10.1115/1.2874455
6.
Lenci
,
S.
,
Menditto
,
G.
, and
Tarantino
,
A. M.
,
1999
, “
Homoclinic and Heteroclinic Bifurcation in the Nonlinear Dynamics of Beam Resting on an Elastic Substrate
,”
Int. J. Non-Linear Mech.
,
34
(
4
), pp.
615
632
.10.1016/S0020-7462(98)00001-8
7.
Lenci
,
S.
, and
Tarantino
,
A. M.
,
1996
, “
Chaotic Dynamics of an Elastic Beam Resting on a Winkler-Type Soil
,”
Chaos, Solitons Fractals
,
7
(
10
), pp.
1601
1614
.10.1016/S0960-0779(96)00030-6
8.
Fuller
,
C. R.
,
Eliot
,
S. J.
, and
Nelson
,
P. A.
,
1997
,
Active Control of Vibration
,
Academic Press
,
London
.
9.
Tsai
,
M. S.
, and
Wang
,
K. W.
,
1999
, “
On the Damping Characteristics of Active Piezoelectric Actuator With Passive Shunt
,”
J. Sound Vib.
,
121
(
1
), pp.
1
22
.10.1006/jsvi.1998.1841
10.
Nana Nbendjo
,
B. R.
,
2004
, “
Dynamics and Active Control With Delay of the Dynamics of Unbounded Monostable Mechanical Structures With ϕ6 Potentials
,” Ph.D. thesis, University of Yaounde I, Yaounde, Cameroon.
11.
Nana Nbendjo
,
B. R.
,
Tchoukuegno
,
R.
, and
Woafo
,
P.
,
2003
, “
Active Control With Delay of Vibration and Chaos in a Double Well Duffing Oscillator
,”
Chaos Solitons Fractals
,
18
(
2
), pp.
345
353
.10.1016/S0960-0779(02)00681-1
12.
Nana Nbendjo
,
B. R.
, and
Woafo
,
P.
,
2009
, “
Modeling and Optimal Active Control With Delay of the Dynamics of a Strongly Nonlinear Beam
,”
J. Adv. Res. Dyn. Control Syst.
,
1
(
1
), pp.
57
74
.
13.
Eissa
,
M.
,
El-Ganaini
,
W.
, and
Hamed
,
Y. S.
,
2005
, “
Saturation, Stability and Resonance of Nonlinear Systems
,”
Phys. A
,
356
(
2–4
), pp.
341
358
.10.1016/j.physa.2005.01.058
14.
Eissa
,
M.
,
El-Serafi
,
S.
,
El-Sherbiny
,
H.
, and
El-Ghareeb
,
T. H.
,
2006
, “
Comparison Between Passive and Active Control of Non-Linear Dynamical System
,”
Jpn. J. Ind. Appl. Math.
,
23
(
2
), pp.
139
161
.10.1007/BF03167548
15.
Eissa
,
M.
, and
Sayed
,
M.
,
2006
, “
A Comparison Between Active and Passive Vibration Control of Non-Linear Simple Pendulum, Part I: Transversally Tuned Absorber and Negative Gϕ·n Feedback
,”
Math. Comput. Appl.
,
11
(
2
), pp.
137
149
.
16.
Eissa
,
M.
, and
Sayed
,
M.
,
2006
, “
Comparison Between Active and Passive Vibration Control of Non-Linear Simple Pendulum, Part II: Longitudinal Tuned Absorber Gϕ··n and Negative Gφn Feedback
,”
Math. Comput. Appl.
,
11
(
2
), pp.
151
162
.
17.
El-Sayed
,
A. T.
,
Kamel
,
M.
, and
Eissa
,
M.
,
2010
, “
Vibration Reduction of a Pitch-Roll Ship Model With Longitudinal and Transverse Absorber Under Multi Excitations
,”
J. Math. Comput. Model.
,
52
(
9–10
), pp.
1877
1898
.10.1016/j.mcm.2010.07.027
18.
Yaman
,
M.
,
2009
, “
Direct and Parametric Excitation of a Nonlinear Cantilever Beam of Varying Orientation With Time Delay State Feedback
,”
J. Sound Vib.
,
324
(
3–5
), pp.
892
920
.10.1016/j.jsv.2009.02.010
19.
Maccari
,
A.
,
2006
, “
Vibration Control for Parametrically Excited Lienard Systems
,”
Int. J. Non-Linear Mech.
,
41
(
1
), pp.
146
155
.10.1016/j.ijnonlinmec.2005.06.007
20.
Maccari
,
A.
,
2008
, “
Vibration Amplitude Control for a van der Pol-Duffing Oscillator With Time Delay
,”
J. Sound Vib.
,
317
(
1–2
), pp.
20
29
.10.1016/j.jsv.2008.03.029
21.
Raghavendra
,
D.
, and
Singru
,
P. M.
,
2011
, “
Resonance, Stability and Chaotic Vibration of a Quarter-Car Vehicle Model With Time-Delay Feedback
,”
J. Commun. Nonlinear Sci. Numer. Simul.
,
16
(
8
), pp.
3397
3410
.10.1016/j.cnsns.2010.11.006
22.
El-Bassiouny
,
A. F.
,
2006
, “
Stability and Oscillation of Two Coupled Duffing Equations With Time Delay State Feedback
,”
Phys. Scr.
,
74
(
6
), pp.
726
735
.10.1088/0031-8949/74/6/020
23.
El-Bassiouny
,
A. F.
,
2006
, “
Vibration Control of a Cantilever Beam With Time Delay State Feedback
,”
Z. Naturforsch.
,
61
(a), pp.
629
640
.
24.
El-Bassiouny
,
A. F.
,
2006
, “
Fundamental and Sub Harmonic Resonances of Harmonically Oscillation With Time Delay State Feedback
,”
J. Shock Vib.
,
13
(
2
), pp.
65
83
.10.1155/2006/842318
25.
El-Bassiouny
,
A. F.
, and
El-Kholy
,
S.
,
2010
, “
Resonances of a Nonlinear SDOF System With Time Delay in Linear Feedback Control
,”
Phys. Scr.
,
81
(
1
), p.
015007
.10.1088/0031-8949/81/01/015007
26.
El-Ganaini
,
W.
, and
El-Gohary
,
H. A.
,
2011
, “
Vibration Suppression Via Time Delay Absorber Non-Linear Differential Equations
,”
Adv. Theor. Appl. Mech.
,
4
(
2
), pp.
49
67
.
27.
El-Gohary
,
H. A.
, and
El-Ganaini
,
W.
,
2012
, “
Vibration Suppression of Dynamical System to Multi-Parametric Excitations Via Time-Delay Absorber
,”
Appl. Math. Model.
,
36
(
1
), pp.
35
45
.10.1016/j.apm.2011.05.034
28.
El-Ganaini
,
W.
, and
El-Gohary
,
H. A.
, “
Vibration Reduction of a Nonlinear Oscillating System to Multi-Parametric and Multi-External Excitations Via Time-Delay Technique
,”
J. Appl. Math. Model.
(submitted).
29.
Nayfeh
,
A. H.
,
1973
,
Perturbation Methods
,
Wiley
,
New York
.
30.
Kevorkian
,
J.
, and
Cole
,
J.
,
1996
,
Multiple Scale and Singular Perturbation Methods
,
Springer-Verlag
,
New York
.
31.
Nayfeh
,
A. H.
,
2000
,
Non-Linear Interactions
,
Wiley-Inter Science
,
New York
.
32.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1994
,
Applied Non-Linear Mechanics
,
Wiley-Inter Science
,
New York
.
You do not currently have access to this content.