In the present study, we tested the feasibility of actuation of microplates by fringing electrostatic fields, i.e., field lines between plates and the sidewalls supporting them. Unlike the common close-gap actuation mechanism usually used in these kinds of devices, we present an alternative operational principle based on an electrostatic fringe field for the actuation of micro electromechanical (MEMS) plates, which is especially beneficial for open air environment operation. In order to validate the actuation principle, a circular MEMS plate was considered and an analytical model was built. The electrostatic force applied to the plate was extracted from a solution of a steady boundary value problem of a cylinder and was validated numerically using finite element simulation. This was followed by a solution of the plate governing equation of motion using an expansion theorem. Devices of two different geometries were fabricated and operated. Actuation of the plates by means of the fringing field was demonstrated experimentally. The proposed architecture and actuation principle is advantageous and overcomes many of the difficulties encountered in microplates electrostatically actuated by a close-gap electrode. Due to the absence of a small gap, the device is not prone to pull-in instability and stiction and is not subjected to squeeze-film damping. Moreover, since the actuation is separated from the front side of the device, open air contaminations, such as humidity or dust, cannot cause operational failure. In addition, the device is especially beneficial for mass sensing in an open environment, as well as flow senors where a flush-mounted smooth surface is important.

References

References
1.
Kuntzman
,
M. L.
,
Garcia
,
C. T.
,
Onaran
,
A. G.
,
Avenson
,
B.
,
Kirk
,
K. D.
, and
Hall
,
N. A.
,
2011
, “
Performance and Modeling of a Fully Packaged Micromachined Optical Microphone
,”
J. Microelectromech. Syst.
,
20
(
4
), pp.
828
833
.10.1109/JMEMS.2011.2148164
2.
Ya'akobovitz
,
A.
, and
Krylov
,
S.
,
2011
, “
Large Angle Silicon-on-Insulator Tilting Actuator With Kinematic Excitation and Simple Integrated Parallel-Plate Electrostatic Transducer
,”
Jpn. J. Appl. Phys., Part 1
,
50
(
11R
), p.
117201
.10.7567/JJAP.50.117201
3.
Ya'akobovitz
,
A.
, and
Krylov
,
S.
,
2010
, “
Toward Sensitivity Enhancement of MEMS Accelerometers Using Mechanical Amplification Mechanism
,”
IEEE Sens. J.
,
10
(
8
), pp.
1311
1319
.10.1109/JSEN.2009.2039751
4.
Milanovic
,
V.
,
Last
,
M.
, and
Pister
,
K.
,
2003
, “
Laterally Actuated Torsional Micromirrors for Large Static Deflection
,”
IEEE Photonics Technol. Lett.
,
15
(
2
), pp.
245
247
.10.1109/LPT.2002.806085
5.
Ya'akobovitz
,
A.
,
Krylov
,
S.
, and
Shacham-Diamand
,
Y.
,
2008
, “
Large Angle SOI Tilting Actuator With Integrated Motion Transformer and Amplifier
,”
Sens. Actuators, A
,
148
(
2
), pp.
422
436
.10.1016/j.sna.2008.08.020
6.
Haluzan
,
D. T.
,
Klymyshyn
,
D. M.
,
Börner
,
M.
,
Achenbach
,
S.
,
Wells
,
G.
,
Mappes
,
T.
, and
Mohr
,
J.
,
2008
, “
Stiction Issues and Actuation of RF LIGA-MEMS Variable Capacitors
,”
Microsyst. Technol.
,
14
(
9–11
), pp.
1709
1714
.10.1007/s00542-008-0583-6
7.
Porfiri
,
M.
,
2009
, “
An Electromechanical Model for Sensing and Actuation of Ionic Polymer Metal Composites
,”
Smart Mater. Struct.
,
18
(
1
), p.
015016
.10.1088/0964-1726/18/1/015016
8.
Castro
,
L.
,
Ferreira
,
A.
,
Bertoluzza
,
S.
,
Batra
,
R.
, and
Reddy
,
J.
,
2010
, “
A Wavelet Collocation Method for the Static Analysis of Sandwich Plates Using a Layerwise Theory
,”
Compos. Struct.
,
92
(
8
), pp.
1786
1792
.10.1016/j.compstruct.2010.01.021
9.
Gilhooley
,
D.
,
Batra
,
R.
,
Xiao
,
J.
,
McCarthy
,
M.
, and
Gillespie
,
J.
, Jr.
,
2007
, “
Analysis of Thick Functionally Graded Plates by Using Higher-Order Shear and Normal Deformable Plate Theory and MLPG Method With Radial Basis Functions
,”
Compos. Struct.
,
80
(
4
), pp.
539
552
.10.1016/j.compstruct.2006.07.007
10.
Chan
,
C.-K.
,
Lai
,
W.-C.
,
Wu
,
M.
,
Wang
,
M.-Y.
, and
Fang
,
W.
,
2011
, “
Design and Implementation of a Capacitive-Type Microphone With Rigid Diaphragm and Flexible Spring Using the Two Poly Silicon Micromachining Processes
,”
IEEE Sens. J.
,
11
(
10
), pp.
2365
2371
.
11.
Lee
,
I.
,
Yoon
,
G.
,
Park
,
J.
,
Seok
,
S.
,
Chun
,
K.
, and
Lee
,
K.
,
2005
, “
Development and Analysis of the Vertical Capacitive Accelerometer
,”
Sens. Actuators, A
,
119
(
1
), pp.
8
18
.10.1016/j.sna.2004.06.033
12.
Acar
,
C.
, and
Shkel
,
A.
,
2004
, “
Structural Design and Experimental Characterization of Torsional Micromachined Gyroscopes With Non-Resonant Drive Mode
,”
J. Micromech. Microeng.
,
14
(
1
), pp.
15
25
.10.1088/0960-1317/14/1/303
13.
Kwon
,
S.
,
Milanovic
,
V.
, and
Lee
,
L.
,
2004
, “
Vertical Combdrive Based 2-D Gimbaled Micromirrors With Large Static Rotation by Backside Island Isolation
,”
IEEE J. Sel. Top. Quantum Electron.
,
10
(
3
), pp.
498
504
.10.1109/JSTQE.2004.828493
14.
Zhu
,
Y.
, and
Espinosa
,
H.
,
2004
, “
Reliability of Capacitive RF MEMS Switches at High and Low Temperatures
,”
Int. J. RF Microwave Comput. Aided Eng.
,
14
(
4
), pp.
317
328
.10.1002/mmce.20015
15.
Lee
,
H.-C.
,
Park
,
J.-V.
, and
Park
,
Y.-H.
,
2007
, “
Development of Shunt Type Ohmic RF MEMS Switches Actuated by Piezoelectric Cantilever
,”
Sens. Actuators, A
,
136
(
1
), pp.
282
290
.10.1016/j.sna.2006.10.050
16.
Yoshida
,
K.
,
Kikuchi
,
M.
,
Park
,
J.
, and
Yokota
,
S.
,
2002
, “
Fabrication of Micro Electro-Rheological Valves (ER Valves) by Micromachining and Experiments
,”
Sens. Actuators, A
,
95
(
2–3
), pp.
227
233
.10.1016/S0924-4247(01)00730-0
17.
Berns
,
A.
,
Buder
,
U.
,
Obermeier
,
E.
,
Wolter
,
A.
, and
Leder
,
A.
,
2006
, “
AeroMEMS Sensor Array for High-Resolution Wall Pressure Measurements
,”
Sens. Actuators A: Phys.
,
132
(
1
), pp.
104–111
.10.1016/j.sna.2006.04.056
18.
Ko
,
C.
, and
Chiou
,
J.
,
2003
, “
Optimal Design of the Magnetic Microactuator Using the Genetic Algorithm
,”
J. Magn. Magn. Mater.
,
263
(
1–2
), pp.
38
46
.10.1016/S0304-8853(02)01533-0
19.
Xie
,
T.
,
Xie
,
H.
,
Fedder
,
G.
, and
Pan
,
Y.
,
2003
, “
Endoscopic Optical Coherence Tomography With a Modified Microelectromechanical Systems Mirror for Detection of Bladder Cancers
,”
Appl. Opt.
,
42
(
31
), pp.
6422
6426
.10.1364/AO.42.006422
20.
Filhol
,
F.
,
Defay
,
E.
,
Divoux
,
C.
,
Zinck
,
C.
, and
Delaye
,
M.
,
2005
, “
Resonant Micro-Mirror Excited by a Thin-Film Piezoelectric Actuator for Fast Optical Beam Scanning
,”
Sens. Actuators, A: Phys.
,
123–124
, pp.
483
489
.10.1016/j.sna.2005.04.029
21.
Isamoto
,
K.
,
Kato
,
K.
,
Morosawa
,
A.
,
Chong
,
C.
,
Fujita
,
H.
, and
Toshiyoshi
,
H.
,
2004
, “
A 5-V Operated MEMS Variable Optical Attenuator by SOI Bulk Micromachining
,”
IEEE J. Sel. Top. Quantum Electron.
,
10
(
3
), pp.
570
578
.10.1109/JSTQE.2004.828475
22.
Batra
,
R.-C.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2008
, “
Effects of Van der Waals Force and Thermal Stresses on Pull-In Instability of Clamped Rectangular Microplates
,”
Sensors
,
8
(
2
), pp.
1048
1069
.10.3390/s8021048
23.
Porfiri
,
M.
,
2008
, “
Vibrations of Parallel Arrays of Electrostatically Actuated Microplates
,”
J. Sound Vib.
,
315
(
4
), pp.
1071
1085
.10.1016/j.jsv.2008.02.007
24.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
,
2004
, “
A New Approach to the Modeling and Simulation of Flexible Microstructures Under the Effect of Squeeze-Film Damping
,”
J. Micromech. Microeng.
,
14
(
2
), pp.
170
181
.10.1088/0960-1317/14/2/002
25.
Han
,
C.-H.
,
Choi
,
D.-H.
, and
Yoon
,
Y.-B.
,
2011
, “
Parallel-Plate MEMS Variable Capacitor With Superior Linearity and Large Tuning Ratio Using a Levering Structure
,”
J. Microelectromech. Syst.
,
20
(
6
), pp.
1345
1354
.10.1109/JMEMS.2011.2167657
26.
Batra
,
R.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2007
, “
Review of Modeling Electrostatically Actuated Microelectromechanical Systems
,”
Smart Mater. Struct.
,
16
(
6
), pp.
R23
R31
.10.1088/0964-1726/16/6/R01
27.
Elata
,
D.
,
Bochobza-Degani
,
O.
, and
Nemirovsky
,
Y.
,
2003
, “
Analytical Approach and Numerical Alpha-Lines Method for Pull-In Hyper-Surface Extraction of Electrostatic Actuators With Multiple Uncoupled Voltage Sources
,”
J. Microelectromech. Syst.
,
12
(
5
), pp.
681
691
.10.1109/JMEMS.2003.818456
28.
Guo
,
Y.
,
Pan
,
Z.
, and
Ward
,
M.
,
2005
, “
Touchdown and Pull-In Voltage Behavior of a MEMS Device With Varying Dielectric Properties
,”
SIAM J. Appl. Math.
,
66
(
1
), pp.
309
338
.10.1137/040613391
29.
Zhang
,
Y.
, and
Zhao
,
Y.
,
2006
, “
Numerical and Analytical Study on the Pull-In Instability of Micro-Structure Under Electrostatic Loading
,”
Sens. Actuators A: Phys.
,
127
(
2
), pp.
366
380
.10.1016/j.sna.2005.12.045
30.
Lemaire
,
E.
,
Rochus
,
V.
,
Golinval
,
J. C.
, and
Duysinx
,
P.
,
2008
, “
Microbeam Pull-In Voltage Topology Optimization Including Material Deposition Constraint
,”
Comput. Meth. Appl. Mech. Eng.
,
197
(
45–48
), pp.
4040
4050
.10.1016/j.cma.2008.03.024
31.
Rhoads
,
J.
,
Shaw
,
S. W.
, and
Turner
,
K. L.
,
2008
, “
Nonlinear Dynamics and Its Applications in Micro- and Nanoresonators
,”
ASME
Paper No. DSCC2008-2406.10.1115/DSCC2008-2406
32.
Lucyszyn
,
S.
,
2004
, “
Review of Radio Frequency Microelectromechanical Systems Technology
,”
IEEE Proc. Sci. Meas. Technol.
,
151
(
2
), pp.
93
103
.10.1049/ip-smt:20040405
33.
Zhao
,
Y.
,
2003
, “
Stiction and Anti-Stiction in MEMS and NEMS
,”
Acta Mech. Sin.
,
19
(
1
), pp.
1
10
.10.1007/BF02487448
34.
Younis
,
M. I.
, and
Nayfeh
,
A. H.
,
2004
, “
Simulation of Squeeze-Film Damping of Microplates Actuated by Large Electrostatic Load
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
3
), pp.
232
241
.10.1115/1.2727491
35.
Batra
,
R. C.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2006
, “
Electromechanical Model of Electrically Actuated Narrow Microbeams
,”
J. Microelectromech. Syst.
,
15
(
5
), pp.
1175
1189
.10.1109/JMEMS.2006.880204
36.
Boutaayamou
,
M.
,
Sabariego
,
R. V.
, and
Dular
,
P.
,
2008
, “
Finite Element Modeling of Electrostatic MEMS Including the Impact of Fringing Field Effects on Forces
,”
Sens. Lett.
,
6
(
1
), pp.
115
120
.10.1166/sl.2008.006
37.
Chowdhury
,
S.
,
Ahmadi
,
M.
, and
Miller
,
W.
,
2006
, “
Pull-In Voltage Study of Electrostatically Actuated Fixed-Fixed Beams Using a VLSI On-Chip Interconnect Capacitance Model
,”
J. Microelectromech. Syst.
,
15
(
3
), pp.
639
651
.10.1109/JMEMS.2005.863784
38.
Yeh
,
J.
,
Hui
,
C.
, and
Tien
,
N.
,
2000
, “
Electrostatic Model for an Asymmetric Combdrive
,”
J. Microelectromech. Syst.
,
9
(
1
), pp.
126
135
.10.1109/84.825787
39.
Johnson
,
W.
, and
Warne
,
L.
,
1995
, “
Electrophysics of Micromechanical Comb Actuators
,”
J. Microelectromech. Syst.
,
4
(
1
), pp.
49
59
.10.1109/84.365370
40.
Tang
,
W. C.
,
Lim
,
M. G.
, and
Howe
,
R. T.
,
1992
, “
Electrostatic Comb Drive Levitation and Control Method
,”
J. Microelectromech. Syst.
,
1
(
4
), pp.
170
178
.10.1109/JMEMS.1992.752508
41.
Tilleman
,
M.
,
2004
, “
Analysis of Electrostatic Comb-Driven Actuators in Linear and Nonlinear Regions
,”
Int. J. Solids Struct.
,
41
(
18–19
), pp.
4889
4898
.10.1016/j.ijsolstr.2004.04.034
42.
Hammer
,
H.
,
2010
, “
Analytical Model for Comb-Capacitance Fringe Fields
,”
J. Microelectromech. Syst.
,
19
(
1
), pp.
175
182
.10.1109/JMEMS.2009.2037833
43.
Chiou
,
J.
, and
Lin
,
Y.
,
2005
, “
A Novel Large Displacement Electrostatic Actuator: Pre-Stress Comb-Drive Actuator
,”
J. Micromech. Microeng.
,
15
(
9
), pp.
1641
1648
.10.1088/0960-1317/15/9/005
44.
Greywall
,
D.
,
Pai
,
C.
,
Oh
,
S.
,
Chang
,
C.
,
Marom
,
D.
,
Busch
,
P.
,
Cirelli
,
R.
,
Taylor
,
J.
,
Klemens
,
F.
,
Sorsch
,
T.
,
Bower
,
J.
,
Lai
,
W.
, and
Soh
,
H.
,
2003
, “
Monolithic Fringe-Field-Activated Crystalline Silicon Tilting-Mirror Devices
,”
J. Microelectromech. Syst.
,
12
(
5
), pp.
702
707
.10.1109/JMEMS.2003.818068
45.
Chen
,
Z.
, and
Luo
,
R.
,
1998
, “
Design and Implementation of Capacitive Proximity Sensor Using Microelectromechanical Systems Technology
,”
IEEE Trans. Ind. Electron.
,
45
(
6
), pp.
886
894
.10.1109/41.735332
46.
Langfelder
,
G.
,
Longoni
,
A. F.
,
Tocchio
,
A.
, and
Lasalandra
,
E.
,
2011
, “
MEMS Motion Sensors Based on the Variations of the Fringe Capacitances
,”
IEEE Sens. J.
,
11
(
4
), pp.
1069
1077
.10.1109/JSEN.2010.2078499
47.
Ya'akobovitz
,
A.
, and
Krylov
,
S.
,
2012
, “
Influence of Perforation on Electrostatic and Damping Forces in Thick SOI MEMS Structures
,”
J. Micromech. Microeng.
,
22
(
11
), p.
115006
.10.1088/0960-1317/22/11/115006
48.
Carslaw
,
H.
, and
Jaeger
,
J.
,
1959
,
Conduction of Heat in Solids
,
2nd ed.
,
Oxford University
,
London
.
49.
Senturia
,
S.
,
2001
,
Microsystem Design
,
Kluwer Academic Publishers
,
Boston, MA
.
50.
Seely
,
S.
,
1962
,
Electromechanical Energy Conversion
,
McGraw-Hill
,
New York
.
51.
Batra
,
R. C.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2008
, “
Reduced-Order Models for Microelectromechanical Rectangular and Circular Plates Incorporating the Casimir Force
,”
Int. J. Solids Struct.
,
45
(
11–12
), pp.
3558
3583
.10.1016/j.ijsolstr.2008.02.019
52.
Reddy
,
J.
,
1999
,
Theory and Analysis of Elastic Plates and Shells
,
Taylor & Francis
,
Philadelphia, PA
.
53.
Adhikari
,
S.
,
2006
, “
Damping Modelling Using Generalized Proportional Damping
,”
J. Sound. Vib.
,
293
(
1–2
), pp.
156
170
.10.1016/j.jsv.2005.09.034
54.
Angeles
,
J.
, and
Ostrovskaya
,
S.
,
2002
, “
The Proportional-Damping Matrix of Arbitrarily Damped Linear Mechanical Systems
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
649
656
.10.1115/1.1483832
55.
Craig
,
R.
, and
Kurdila
,
A.
,
2006
,
Fundamentals of Structural Dynamics
,
Wiley
,
New York
.
56.
Pan
,
F.
,
Kubby
,
J.
,
Peeters
,
E.
,
Tran
,
A. T.
, and
Mukherjee
,
S.
,
1998
, “
Squeeze Film Damping Effect on the Dynamic Response of a MEMS Torsion Mirror
,”
J. Micromech. Microeng.
,
8
(
3
), pp.
200
208
.10.1088/0960-1317/8/3/005
57.
Starr
,
J. B.
,
1990
, “
Squeeze-Film Damping in Solid-State Accelerometers
,”
IEEE Solid-State Sensor and Actuator Workshop
, 4th Technical Digest, Hilton Head Island, SC, June 4–7, pp.
44
47
.10.1109/SOLSEN.1990.109817
58.
Langlois
,
W. E.
,
1961
, “
Isothermal Squeeze Films
,” Defense Technical Information Center, Fort Belvoir, VA, Report No. 261094.
59.
Ono
,
T.
, and
Esashi
,
M.
,
2004
, “
Mass Sensing With Resonating Ultra-Thin Silicon Beams Detected by a Double-Beam Laser Doppler Vibrometer
,”
Meas. Sci. Technol.
,
15
(
10
), pp.
1977
1981
.10.1088/0957-0233/15/10/005
60.
Krylov
,
S.
,
Molinazzi
,
N.
,
Shmilovich
,
T.
,
Pomerantz
,
U.
, and
Lulinsky
,
S.
,
2010
, “
Parametric Excitation of Flexural Vibrations of Micro Beams by Fringing Electrostatic Fields
,”
ASME
Paper No. DETC2010-28684.10.1115/DETC2010-28684
61.
Alkharabsheh
,
S. A.
, and
Mohammad
,
Y. I.
,
2013
, “
Statics and Dynamics of MEMS Arches Under Axial Forces
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
021007
.10.1115/1.4023055
62.
Carr
,
D. W.
,
Evoy
,
S.
,
Sekaric
,
L.
,
Craighead
,
H.
, and
Parpia
,
J.
,
2000
, “
Parametric Amplification in a Torsional Microresonator
,”
Appl. Phys. Lett.
,
77
(
10
), pp.
1545
1547
.10.1063/1.1308270
63.
Evoy
,
S.
,
Carr
,
D.
,
Sekaric
,
L.
,
Olkhovets
,
A.
,
Parpia
,
J.
, and
Craighead
,
H.
,
1999
, “
Nanofabrication and Electrostatic Operation of Single-Crystal Silicon Paddle Oscillators
,”
J. Appl. Phys.
,
86
(
11
), pp.
6072
6077
.10.1063/1.371656
64.
Su
,
X.
, and
Yang
,
H.
,
2001
, “
Design of Compliant Microleverage Mechanisms
,”
Sens. Actuators A: Phys.
,
87
(
3
), pp.
146
156
.10.1016/S0924-4247(00)00488-X
65.
Adiga
,
V.
,
Ilic
,
B.
,
Barton
,
R.
,
Wilson-Rae
,
I.
,
Craighead
,
H.
, and
Parpia
,
J.
,
2012
, “
Approaching Intrinsic Performance in Ultra-Thin Silicon Nitride Drum Resonators
,”
J. Appl. Phys.
,
112
(
6
), p.
064323
.10.1063/1.4754576
66.
Kottapalli
,
A.
,
Tan
,
C.
,
Olfatnia
,
M.
,
Miao
,
J.
,
Barbastathis
,
G.
, and
Triantafyllou
,
M.
,
2011
, “
A Liquid Crystal Polymer Membrane MEMS Sensor for Flow Rate and Flow Direction Sensing Applications
,”
J. Micromech. Microeng.
,
21
(
8
), p.
085006
.10.1088/0960-1317/21/8/085006
67.
Wen
,
C.-C.
, and
Fang
,
W.
,
2008
, “
Tuning the Sensing Range and Sensitivity of Three Axes Tactile Sensors Using the Polymer Composite Membrane
,”
Sens. Actuators A: Phys.
,
145–146
, pp.
14
22
.10.1016/j.sna.2007.10.011
68.
Wang
,
X.
,
Engel
,
J.
, and
Liu
,
C.
,
2003
, “
Liquid Crystal Polymer (LCP) for MEMS: Processes and Applications
,”
J. Micromech. Microeng.
,
13
(
5
), pp.
628
633
.10.1088/0960-1317/13/5/314
69.
Su
,
X.
, and
Yang
,
H.
,
2001
, “
Two-Stage Compliant Microleverage Mechanism Optimization in a Resonant Accelerometer
,”
Struct. Multidiscip. Opt.
,
22
(
4
), pp.
328
334
.10.1007/s00158-001-0153-3
70.
Ilic
,
B.
,
Yang
,
Y.
,
Aubin
,
K.
,
Reichenbach
,
R.
,
Krylov
,
S.
, and
Craighead
,
H.
,
2005
, “
Enumeration of DNA Molecules Bound to a Nanomechanical Oscillator
,”
Nano Lett.
,
5
(
5
), pp.
925
929
.10.1021/nl050456k
71.
Chiu
,
H.-Y.
,
Hung
,
P.
,
Postma
,
H. W. C.
, and
Bockrath
,
M.
,
2008
, “
Atomic-Scale Mass Sensing Using Carbon Nanotube Resonators
,”
Nano Lett.
,
8
(
12
), pp.
4342
4346
.10.1021/nl802181c
You do not currently have access to this content.