This study examines wave attenuation and power flow characteristics of sandwich beams with internal absorbers. Two types of absorbing systems embedded in the core are considered, namely, a conventional spring-mass-dashpot system having a mass with a spring and a dashpot in parallel, and a relaxation system containing an additional relaxation spring added in series with the dashpot. Analytical continuum models used for interpreting the attenuation behavior of sandwich structures are presented. Through the analysis of the power flowing into the structure, the correlation of wave attenuation and energy blockage is revealed. The reduction in the power flow indicates that some amount of energy produced by the external force can be effectively obstructed by internal absorbers. The effects of parameters on peak attenuation, bandwidth, and power flow are also studied.

References

References
1.
Sayir
,
M.
, and
Koller
,
M. G.
,
1986
, “
Dynamic Behavior of Sandwich Plates
,”
J. Appl. Math. Phys.
,
37
(1), pp.
78
103
.10.1007/BF00955520
2.
Chalak
,
H. D.
,
Chakrabarti
,
A.
,
Ashraf Iqbal
,
M.
, and
Sheikh
,
A. H.
,
2013
, “
Free Vibration Analysis of Laminated Soft Core Sandwich Plates
,”
ASME J. Vib. Acoust.
,
135
(1), p.
011013
.10.1115/1.4007262
3.
Tan
,
P. J.
,
Reid
,
S. R.
,
Harrigan
,
J. J.
,
Zou
,
Z.
, and
Li
,
S.
,
2005
, “
Dynamic Compressive Strength Properties of Aluminium Foams. Part I—Experimental Data and Observations
,”
J. Mech. Phys. Solids
,
53
(10), pp.
2174
2205
.10.1016/j.jmps.2005.05.007
4.
Tilbrook
,
M. T.
,
Deshpande
, V
. S.
, and
Fleck
,
N. A.
,
2006
, “
The Impulsive Response of Sandwich Beams: Analytical and Numerical Investigation of Regimes of Behavior
,”
J. Mech. Phys. Solids
,
54
(11), pp.
2242
2280
.10.1016/j.jmps.2006.07.001
5.
Karagiozova
,
D.
,
Nurick
,
G. N.
,
Langdon
,
G. S.
,
Chung Kim Yuen
,
S.
,
Chi
,
Y.
, and
Bartle
,
S.
,
2009
, “
Response of Flexible Sandwich-Type Panels to Blast Loading
,”
Compos. Sci. Technol.
,
69
(6), pp.
754
763
.10.1016/j.compscitech.2007.12.005
6.
Wang
,
D.
,
2009
, “
Impact Behavior and Energy Absorption of Paper Honeycomb Sandwich Panels
,”
Int. J. Impact Eng.
,
36
(1), pp.
110
114
.10.1016/j.ijimpeng.2008.03.002
7.
Ormondroyd
,
J.
, and
Den Hartog
,
J. P.
,
1928
, “
The Theory of Dynamic Vibration Absorber
,”
ASME J. Appl. Mech.
,
49
, pp.
A9
A22
.
8.
Brock
,
J. E.
,
1946
, “
A Note on the Damped Vibration Absorbers
,”
ASME J. Appl. Mech.
,
68
, pp. A-248.
9.
Young
,
D.
,
1952
, “
Theory of Dynamic Vibration Absorbers for Beams
,”
First U.S. National Congress of Applied Mechanics
,
Chicago, IL, June 11–16
, pp.
91
96
.
10.
Snowdon
,
J. C.
,
1966
, “
Vibration of Cantilever Beams to Which Dynamic Absorbers are Attached
,”
J. Acoust. Soc. Am.
,
39
(5A), pp.
878
886
.10.1121/1.1909966
11.
Esmailzadeh
,
E.
, and
Jalili
,
N.
,
1998
, “
Optimum Design of Vibration Absorbers for Structurally Damped Timoshenko Beams
,”
ASME J. Vib. Acoust.
,
120
(4), pp.
833
841
.10.1115/1.2893908
12.
Tursun
,
M.
, and
Eşkinat
,
E.
,
2014
, “
H2 Optimization of Damped-Vibration Absorbers for Suppressing Vibrations in Beams With Constrained Minimization
,”
ASME J. Vib. Acoust.
,
136
(2), p.
021012
.10.1115/1.4026246
13.
Samani
,
F. S.
, and
Pellicano
,
F.
,
2009
, “
Vibration Reduction on Beams Subjected to Moving Loads Using Linear and Nonlinear Dynamic Absorbers
,”
J. Sound Vib.
,
325
(4–5), pp.
742
754
.10.1016/j.jsv.2009.04.011
14.
Yang
,
C.
,
Li
,
D.
, and
Cheng
,
L.
,
2011
, “
Dynamic Vibration Absorbers for Vibration Control Within a Frequency Band
,”
J. Sound Vib.
,
330
(8), pp.
1582
1598
.10.1016/j.jsv.2010.10.018
15.
Smith
,
T. L.
,
Rao
,
K.
, and
Dyer
, I
.
,
1986
, “
Attenuation of Plate Flexural Waves by a Layer of Dynamic Absorbers
,”
Noise Control Eng. J.
,
26
(2), pp.
56
60
.10.3397/1.2827662
16.
Meng
,
J.
,
1991
, “
Coupled Wave Propagation in a Rod With Dynamic Absorber Layer
,” S.M. thesis, Massachusetts Institute of Technology, Cambridge, MA.
17.
Thompson
,
D. J.
,
2008
, “
A Continuous Damped Vibration Absorber to Reduce Broad-Band Wave Propagation in Beams
,”
J. Sound Vib.
,
311
(3–5), pp.
824
842
.10.1016/j.jsv.2007.09.038
18.
Goyder
,
H. G. D.
, and
White
,
R. G.
,
1980
, “
Vibrational Power Flow From Machines Into Built-Up Structure, Part I: Introduction and Approximate Analysis of Beam and Plate-Like Foundations
,”
J. Sound Vib.
,
68
(1), pp.
59
75
.10.1016/0022-460X(80)90452-6
19.
Goyder
,
H. G. D.
, and
White
,
R. G.
,
1980
, “
Vibrational Power Flow From Machines Into Built-Up Structure, Part II: Wave Propagation and Power Flow in Beam-Stiffened Plates
,”
J. Sound Vib.
,
68
(1), pp.
77
96
.10.1016/0022-460X(80)90453-8
20.
Goyder
,
H. G. D.
, and
White
,
R. G.
,
1980
, “
Vibrational Power Flow From Machines Into Built-Up Structure, Part III: Power Flow Through Isolation Systems
,”
J. Sound Vib.
,
68
(1), pp.
97
117
.10.1016/0022-460X(80)90454-X
21.
Pinnington
,
R. J.
, and
White
,
R. G.
,
1981
, “
Power Flow Through Machine Isolators to Resonant and Non-Resonant Beams
,”
J. Sound Vib.
,
75
(2), pp.
179
197
.10.1016/0022-460X(81)90338-2
22.
Cuschieri
,
J. M.
,
1990
, “
Vibration Transmission Through Periodic Structures Using a Mobility Power Flow Approach
,”
J. Sound Vib.
,
143
(1), pp.
65
74
.10.1016/0022-460X(90)90568-K
23.
Wu
,
C. J.
, and
White
,
R. G.
,
1995
, “
Vibrational Power Transmission in a Finite Multi-Supported Beam
,”
J. Sound Vib.
,
181
(1), pp.
99
114
.10.1006/jsvi.1995.0128
24.
Yan
,
J.
,
Li
,
T. Y.
,
Liu
,
J. X.
, and
Zhu
,
X.
,
2008
, “
Input Power Flow in a Submerged Infinite Cylindrical Shell With Doubly Periodic Supports
,”
Appl. Acoust.
,
69
(8), pp.
681
690
.10.1016/j.apacoust.2007.02.011
25.
Sorokin
,
S.
, and
Holst-Jensen
,
O.
,
2012
, “
On Power Flow Suppression in Straight Elastic Pipes by Use of Equally Spaced Eccentric Inertial Attachments
,”
ASME J. Vib. Acoust.
,
134
(4), p.
041003
.10.1115/1.4005652
26.
Chen
,
J. S.
, and
Sun
,
C. T.
,
2011
, “
Dynamic Behavior of a Sandwich Beam With Internal Resonators
,”
J. Sandwich Struct. Mater.
,
13
(4), pp.
391
408
.10.1177/1099636210391124
27.
Hasebe
,
R. S.
, and
Sun
,
C. T.
,
2000
, “
Performance of Sandwich Structures With Composite Reinforced Core
,”
J. Sandwich Struct. Mater.
,
2
(1), pp.
75
100
.10.1177/109963620000200104
28.
Wellstead
,
P. E.
,
1979
,
Introduction to Physical System Modeling
,
Academic Press Ltd.
,
London
.
29.
Huang
,
H. H.
, and
Sun
,
C. T.
,
2009
, “
Wave Attenuation Mechanism in an Acoustic Metamaterials With Negative Effective Mass Density
,”
New J. Phys.
,
11
(1), p.
013003
.10.1088/1367-2630/11/1/013003
You do not currently have access to this content.