This paper introduces a modeling framework that is suitable to resolve singularities of impact phenomena encountered in applications. The method involves an exact transformation that turns the continuum, often partial differential equation description of the contact problem into a delay differential equation. The new form of the physical model highlights the source of singularities and suggests a simple criterion for regularity. To contrast singular and regular behavior the impacting Euler–Bernoulli and Timoshenko beam models are compared.

References

References
1.
Stronge
,
W. J.
,
2000
, Impact Mechanics,
Cambridge University
, Cambridge, UK.10.1017/CBO9780511626432
2.
Khulief
,
Y. A.
, and
Shabana
,
A. A.
,
1987
, “
A Continuous Force Model for the Impact Analysis of Flexible Multibody Systems
,”
Mech. Mach. Theory
,
22
(
3
), pp.
213
224
.10.1016/0094-114X(87)90004-8
3.
Nordmark
,
A. B.
, and
Piiroinen
,
P. T.
,
2009
, “
Simulation and Stability Analysis of Impacting Systems With Complete Chattering
,”
Nonlinear Dyn.
,
58
(
1–2
), pp.
85
106
.10.1007/s11071-008-9463-y
4.
Chin
,
W.
,
Ott
,
E.
,
Nusse
,
H. E.
, and
Grebogi
,
C.
,
1994
, “
Grazing Bifurcations in Impact Oscillators
,”
Phys. Rev. E
,
50
(
6
), pp.
4427
4444
.10.1103/PhysRevE.50.4427
5.
Nordmark
,
A.
,
Dankowicz
,
H.
, and
Champneys
,
A. R.
,
2011
, “
Friction-Induced Reverse Chatter in Rigid-Body Mechanisms With Impacts
,”
IMA J. Appl. Math.
,
76
(1), pp.
85
119
.10.1093/imamat/hxq068
6.
Wang
,
C.
, and
Kim
,
J.
,
1996
, “
New Analysis Method for a Thin Beam Impacting Against a Stop Based on the Full Continuous Model
,”
J. Sound Vib.
,
191
(
5
), pp.
809
823
.10.1006/jsvi.1996.0157
7.
Melcher
,
J.
,
Champneys
,
A. R.
, and
Wagg
,
D. J.
,
2013
, “
The Impacting Cantilever: Modal Non-Convergence and the Importance of Stiffness Matching
,”
Philos. Trans. R. Soc. A
,
371
(
1993
), p.
20120434
.10.1098/rsta.2012.0434
8.
Ewins
,
D. J.
,
2000
,
Modal Testing: Theory, Practice and Application (Mechanical Engineering Research Studies: Engineering Dynamics Series)
,
Wiley-Blackwell
, Chichester, UK.
9.
Palas
,
H.
,
Hsu
,
W. C.
, and
Shabana
,
A. A.
,
1992
, “
On the Use of Momentum Balance and the Assumed Modes Method in Transverse Impact Problems
,”
ASME J. Vib. Acoust.
,
114
(
3
), pp.
364
373
.10.1115/1.2930271
10.
Vyasarayani
,
C. P.
,
McPhee
,
J.
, and
Birkett
,
S.
,
2009
, “
Modeling Impacts Between a Continuous System and a Rigid Obstacle Using Coefficient of Restitution
,”
ASME J. Appl. Mech.
,
77
(
2
), p. 021008.10.1115/1.3173667
11.
Wagg
,
D. J.
, and
Bishop
,
S. R.
,
2002
, “
Application of Non-Smooth Modelling Techniques to the Dynamics of a Flexible Impacting Beam
,”
J. Sound Vib.
,
256
(
5
), pp.
803
820
.10.1006/jsvi.2002.5020
12.
Segalman
,
D. J.
,
Roy
,
A. M.
, and
Starr
,
M. J.
,
2006
, “
Modal Analysis to Accommodate Slap in Linear Structures
,”
ASME J. Vib. Acoust.
,
128
(
3
), pp.
303
317
.10.1115/1.2172257
13.
Evans
,
G. R.
,
Jones
,
B. C.
,
McMillan
,
A. J.
, and
Darby
,
M.
I
.
,
1991
, “
A New Numerical-Method for the Calculation of Impact Forces
,”
J. Phys. D-Appl. Phys.
,
24
(
6
), pp.
854
858
.10.1088/0022-3727/24/6/009
14.
Fathi
,
A.
, and
Popplewell
,
N.
,
1994
, “
Improved Approximations for a Beam Impacting a Stop
,”
J. Sound Vib.
,
170
(
3
), pp.
365
375
.10.1006/jsvi.1994.1068
15.
Yin
,
X. C.
,
Qin
,
Y.
, and
Zou
,
H.
,
2007
, “
Transient Responses of Repeated Impact of a Beam Against a Stop
,”
Int. J. Solids Struct.
,
44
(
22–23
), pp.
7323
7339
.10.1016/j.ijsolstr.2007.04.009
16.
Langley
,
R. S.
,
2012
, “
The Analysis of Impact Forces in Randomly Vibrating Elastic Systems
,”
J. Sound Vib.
,
331
(
16
), pp.
3738
3750
.10.1016/j.jsv.2012.03.020
17.
Szalai
,
R.
,
2014
, “
Modelling Elastic Structures With Strong Nonlinearities With Application to Stick-Slip Friction
,”
Proc. R. Soc. A
,
470
(
2161
), p.
20130593
10.1098/rspa.2013.0593.
18.
Takács
,
D.
,
Orosz
,
G.
, and
Stépán
,
G.
,
2009
, “
Delay Effects in Shimmy Dynamics of Wheels With Stretched String-Like Tyres
,”
Eur. J. Mech. A-Solids
,
28
(
3
), pp.
516
525
.10.1016/j.euromechsol.2008.11.007
19.
Stépán
,
G.
, and
Szabó
,
Z.
,
1999
, “
Impact Induced Internal Fatigue Cracks
,”
17th Biennial Conference on Mechanical Vibration and Noise, ASME Design Engineering Technical Conference (DETC'99), Las Vegas, NV, September 12–15
.
20.
Trefethen
,
L. N.
,
2000
,
Spectral Methods in MATLAB
,
SIAM
Philadelphia
, Philadelphia, PA.
21.
van Rensburg
,
N. F. J.
, and
van der Merwe
,
A. J.
,
2006
, “
Natural Frequencies and Modes of a Timoshenko Beam
,”
Wave Motion
,
44
(
1
), pp.
58
69
.10.1016/j.wavemoti.2006.06.008
22.
Oestreich
,
M.
,
Hinrichs
,
N.
, and
Popp
,
K.
,
1997
, “
Dynamics of Oscillators With Impact and Friction
,”
Chaos, Solitons Fractals
,
8
(
4
), pp.
535
558
.10.1016/S0960-0779(96)00121-X
23.
di Bernardo
,
M.
,
Budd
,
C.
,
Champneys
,
A. R.
, and
Kowalczyk
,
P.
,
2008
,
Piecewise-Smooth Dynamical Systems: Theory and Applications
,
Springer
,
New York
.
24.
Chorin
,
A. J.
,
Hald
,
O. H.
, and
Kupferman
,
R.
,
2000
, “
Optimal Prediction and the Mori-Zwanzig Representation of Irreversible Processes
,”
Proc. Natl. Acad. Sci. USA
,
97
(
7
), pp.
2968
2973
.10.1073/pnas.97.7.2968
You do not currently have access to this content.