A novel fatigue testing rig based on inertial forces is introduced. The test rig has capacity to mimic various loading conditions including high frequency loads. The rig design allows reconfigurations to accommodate a range of specimen sizes, and changes in structural elements and instrumentation. It is designed to be used as a platform to study the interaction between fatigue crack propagation and structural dynamics. As the first step to understand this interaction, a numerical model of testing rig is constructed using nonlinear system identification approaches. Some initial testing results also are reported.

References

References
1.
Little
,
R.
, and
Jebe
,
E.
,
1975
,
Statistical Design of Fatigue Experiments
,
Applied Science Publishers Ltd.
,
London
.
2.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
,
Fuchs
,
H. O.
, and
Faterni
,
A.
,
2000
,
Metal Fatigue in Engineering
,
Wiley-Interscience
, New York.
3.
Lee
,
Y.-L.
,
Pan
,
J.
,
Hathaway
,
R.
, and
Barkey
,
M.
,
2004
,
Fatigue Testing and Analysis: Theory and Practice
,
Butterworth-Heinemann
, Oxford, UK.
4.
Shawki
,
G. S.
,
1990
, “
A Review of Fatigue Testing Machines
,”
Eng. J. Qatar Univ.
,
3
, pp.
55
69
.
5.
Weibull
,
W.
,
1960
,
Fatigue Testing and Analysis of Results
,
Advisory Group for Aeronautical Research and Development, North Atlantic Treaty Organization
, Neuilly sur Seine, France.
6.
Bathias
,
C.
,
2006
, “
Piezoelectric Fatigue Testing Machines and Devices
,”
Int. J. Fatigue
,
28
(11), pp.
1438
1445
.10.1016/j.ijfatigue.2005.09.020
7.
Foong
,
C.-H.
,
Wiercigroch
,
M.
, and
Deans
,
W. F.
,
2006
, “
Novel Dynamic Fatigue-Testing Device: Design and Measurements
,”
Meas. Sci. Technol.
,
17
(8), pp.
2218
2226
.10.1088/0957-0233/17/8/023
8.
Nguyen
,
S. H.
,
Falco
,
M.
,
Liu
,
M.
, and
Chelidze
,
D.
, 2014, “
Different Fatigue Dynamics Under Statistically and Spectrally Similar Deterministic and Stochastic Excitations
,”
ASME J. Appl. Mech.
,
81
(4), p. 041004.10.1115/1.4025138
9.
Chelidze
,
D.
,
Cusumano
,
J.
, and
Chatterjee
,
A.
,
2002
, “
Dynamical Systems Approach to Damage Evaluation Tracking, Part I: Description and Experimental Application
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
250
257
.10.1115/1.1456908
10.
Chelidze
,
D.
, and
Liu
,
M.
,
2004
, “
Dynamical Systems Approach to Fatigue Damage Identification
,”
J. Sound Vib.
,
281
(3-5), pp.
887
904
.10.1016/j.jsv.2004.02.017
11.
Chelidze
,
D.
, and
Cusumano
,
J.
,
2006
, “
Phase Space Warping: Nonlinear Time Series Analysis for Slowly Drifting Systems
,”
Philos. Trans. R. Soc. A
,
364
(1846), pp.
2495
2513
.10.1098/rsta.2006.1837
12.
Chelidze
,
D.
, and
Liu
,
M.
,
2008
, “
Reconstructing Slow-Time Dynamics From Fast-Time Measurements
,”
Philos. Trans. R. Soc. A
,
366
(1866), pp.
729
745
.10.1098/rsta.2007.2124
13.
ASTM,
2008
, “Standard Test Methods for Measurement of Fracture Toughness.”
Annual Book of ASTM Standards
,
American Society for Testing and Materials
,
Philadelphia, PA
, Standard No. ASTM-E1820-08a.10.1520/E1820-08A
14.
Dingwell
,
J.
,
Napolitano
,
D.
, and
Chelidze
,
D.
,
2006
, “
A Nonlinear Approach to Tracking Slow-Time-Scale Changes in Movement Kinematics
,”
J. Biomech.
,
40
(7), pp.
1629
1634
.10.1016/j.jbiomech.2006.06.019
15.
Chelidze
,
D.
, and
Liu
,
M.
,
2006
, “
Multidimensional Damage Identification Based on Phase Space Warping: An Experimental Study
,”
Nonlinear Dyn.
,
46
(
1–2
), pp.
887
904
.10.1007/s11071-005-9007-7
16.
Chelidze
,
D.
,
2004
, “
Identifying Multidimensional Damage in a Hierarchical Dynamical System
,”
Nonlinear Dyn.
,
37
(
4
), pp.
307
322
.10.1023/B:NODY.0000045546.02766.ad
17.
Verboven
,
P.
,
2002
, “
Frequency-Domain System Identification for Modal Analysis
,” Ph.D. thesis, Vrije Universiteit Brussel, Brussels, Belgium.
18.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A. F.
, and
Golinval
,
J.-C.
,
2006
, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
20
(3), pp.
505
592
.10.1016/j.ymssp.2005.04.008
19.
Farrar
,
C. R.
,
Cornwell
,
P. J.
,
Doebling
,
S. W.
, and
Prime
,
M. B.
,
2000
, “
Structural Health Monitoring Studies of the Alamosa Canyon and I-40 Bridges
,” Los Alamos National Laboratory, Los Alamos, NM, Technical Report LA-13635-MS.10.2172/766805
20.
Farrar
,
C. R.
,
Worden
,
K.
,
Michael
,
D.
,
Todd
,
G. P.
,
Nichols
,
J.
,
Adams
,
D. E.
,
Bement
,
M. T.
, and
Farinholt
,
K.
,
2007
, “
Nonlinear System Identification for Damage Detection
,” Los Alamos National Laboratory, Los Alamos, NM, Technical Report LA-14353.
21.
Surace
,
C.
,
Worden
,
K.
, and
Tomlinson
,
G. R.
,
1992
, “
An Improved Nonlinear Model for an Automotive Shock Absorber
,”
Nonlinear Dyn.
,
3
(6), pp.
413
429
.10.1007/BF00045646
22.
Sibson
,
R.
,
1985
,
Manual for the TILE4 Interpolation Package
,
Department of Mathematics and Statistics, University of Bath
, Bath, UK.
23.
Olsson
,
H.
,
Astrom
,
K. J.
,
de Wit
,
C. C.
,
Gafvert
,
M.
, and
Lischinsky
,
P.
,
1998
, “
Friction Models and Friction Compensation
,”
Eur. J. Control
,
4
(
3
), pp.
176
195
.10.1016/S0947-3580(98)70113-X
24.
Mohammad
,
K.
,
Wordena
,
K.
, and
Tomlinson
,
G.
,
1992
, “
Direct Parameter Estimation for Linear and Non-Linear Structures
,”
J. Sound Vib.
,
152
(3), pp.
471
499
.10.1016/0022-460X(92)90482-D
25.
Lewis
,
R. M.
, and
Torczon
,
V.
,
1999
, “
Pattern Search Algorithms for Bound Constrained Minimization
,”
SIAM J. Optim.
,
9
(4), pp.
1082
1099
.10.1137/S1052623496300507
You do not currently have access to this content.