The natural frequencies of a specially orthotropic rectangular membrane are examined with respect to its design parameters. A method is presented for inferring the initial tensions from measured vibration frequencies and the sensitivity of the tensions with respect to imprecision in the measured frequencies is demonstrated. A sensitivity analysis is used to define the key design parameters, where relatively small changes in those parameters lead to large changes in the natural frequency. This analysis is useful in two senses: It permits the design to be rapidly changed in an efficient manner, and it indicates the physical parameters that must be closely controlled in order to achieve the desired frequency. The results of the theoretical analysis were compared with a finite element simulation using Abaqus for validation. The comparison showed that results were in close agreement up to an initial displacement magnitude-to-membrane thickness ratio (T0/h) value of about 25 for the given values of design parameters. This shows the limit of applicability of the analytical solution since the finite element (FE) simulation is fully updated at each time step with precision not available from the analytical solution.

References

References
1.
Jenkins
,
C. H.
, ed.
2005
,
Compliant Structures in Nature and Engineering
,
WIT Press
,
Wessex, UK
.
2.
Goncalves
,
P. B.
,
Soares
,
R. M
, and
Djenane
,
P.
,
2009
, “
Nonlinear Vibrations of a Radially Stretched Circular Hyperelastic Membrane
,”
J. Sound Vib
,
327
, pp.
231
248
.10.1016/j.jsv.2009.06.023
3.
Buchanan
,
G. R.
,
1999
, “
Vibration of Circular, Annular Membranes With Variable Density
,”
J. Sound Vib.
,
226
(
2
), pp.
379
382
.10.1006/jsvi.1999.2177
4.
Ramakrishna
,
B. S.
, and
Sondin
,
M.
,
1954
, “
Vibration of Indian Musical Drums Regarded as Composite Membranes
,”
J. Acoust. Soc. Am.
,
26
(
4
), pp.
523
529
.10.1121/1.1907369
5.
Bhat
R. D.
,
1991
, “
Acoustics of a Cavity-Backed Membrane: The Indian Musical Drum
,”
J. Acoust. Soc. Am.
,
90
(
3
), pp.
1469
1474
.10.1121/1.401886
6.
Volandri
,
G.
,
DiPuccio
,
F.
,
Forte
,
P.
, and
Carmignani
C.
,
2011
, “
Biomechanics of the Tympanic Membrane
,”
J. Biomech.
,
44
(7), pp.
1219
1236
.10.1016/j.jbiomech.2010.12.023
7.
Zheng
,
Z.-L.
,
Liu
,
C.-J.
,
He
,
X.-T.
, and
Chen
,
S.-L.
,
2009
, “
Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection
,”
Math Prob. Eng.
,
2009
, p.
634362
10.1155/2009/634362.
8.
Gluck
,
M.
,
Breuer
,
M.
,
Durst
,
F.
,
Halfmann
,
A.
, and
Rank
,
E.
,
2003
, “
Computation of Wind-Induced Vibrations of Flexible Shells and Membranous Structures
,”
J. Fluids Struct.
,
17
(
5
), pp.
739
765
.10.1016/S0889-9746(03)00006-9
9.
Kukathasan
,
S
.,
2000
, “
Vibration of Prestressed Membrane Structures
,” Ph.D. thesis, University at Cambridge, Cambridge, UK.
10.
Jenkins
,
C. H.
,
2001
, “
Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications
,”
Progress in Astronautics and Aeronautics
, Vol.
191
, AIAA, Reston, VA, pp.
19ff
, 49ff, 95ff.
11.
Zaman
,
K. B.
,
Bar-Sever
,
A.
, and
Mangalam
,
S. M.
,
1987
, “
Effect of Acoustic Excitation on the Flow Over a Low-Re Airfoil
,”
Fluid Mech.
,
182
, pp.
127
148
.10.1017/S0022112087002271
12.
Stanford
,
B.
,
Ifju
,
P.
,
Albertani
,
R.
, and
Shyy
,
W.
,
2008
, “
Fixed Membrane Wings for Micro Air Vehicles: Experimental Characterization, Numerical Modeling, and Tailoring
,”
Prog. Aerosp. Sci.
,
44
(4), pp.
258
294
.10.1016/j.paerosci.2008.03.001
13.
Lian
,
Y.
,
Shyy
,
W.
,
Viieru
,
D.
, and
Zhang
,
B.
,
2003
, “
Membrane Wing Aerodynamics For Micro Air Vehicles
,”
Prog. Aerosp. Sci.
,
39
(6–7), pp.
425
465
10.1016/S0376-0421(03)00076-9.
14.
Rojratsirikul
,
P.
,
Genc
,
M. S.
,
Wang
,
Z.
, and
Gursul
,
I.
,
2011
, “
Flow-Induced Vibrations of Low Aspect Ratio Rectangular Membrane Wings
,”
J. Fluids Struct.
,
27
(
8
), pp.
1296
1309
.10.1016/j.jfluidstructs.2011.06.007
15.
Salmon
,
I. H.
, and
Ahmed
,
N. E. A.
,
2004
, “
Delaying Stall by Acoustic Excitation Using a Vibrating Film Wing Surface
,”
22nd AIAA Applied Aerodynamics Conference
, Providence, RI, August 16–19,
AIAA
Paper No. 2004–4962, pp.
443
450
.10.2514/6.2004-4962
16.
Efunda,
2012
, “
Elliptic Function
,” http://www.efunda.com/math/elliptic/elliptic.cfm,
accessed January
2012
.
You do not currently have access to this content.