A three-dimensional computational model for acoustic scattering with complex geometries is presented, which employs the immersed boundary technique to deal with the effect of both hard and soft wall boundary conditions on the acoustic fields. In this numerical model, the acoustic field is solved on uniform Cartesian grids, together with simple triangle meshes to partition the immersed body surface. A direct force at the Lagrangian points is calculated from an influence matrix system, and then spreads to the neighboring Cartesian grid points to make the acoustic field satisfy the required boundary condition. This method applies a uniform stencil on the whole domain except at the computational boundary, which has the benefit of low dispersion and dissipation errors of the used scheme. The method has been used to simulate two benchmark problems to validate its effectiveness and good agreements with the analytical solutions are achieved. No matter how complex the geometries are, single body or multibodies, complex geometries do not pose any difficulty in this model. Furthermore, a simple implementation of time-domain impedance boundary condition is reported and demonstrates the versatility of the computational model.

References

References
1.
Tam
,
C. K.
, and
Dong
,
Z.
,
1994
, “
Wall Boundary Conditions for High-Order Finite-Difference Schemes in Computational Aeroacoustics
,”
Theor. Comput. Fluid Dyn.
,
6
(
5–6
), pp.
303
322
.10.1007/BF00311843
2.
Kurbatskii
,
K. A.
, and
Tam
,
C. K. W.
,
1997
, “
Cartesian Boundary Treatment of Curved Walls for High-Order Computational Aeroacoustics Schemes
,”
AIAA J.
,
35
(
1
), pp.
133
140
.10.2514/2.73
3.
Chung
,
C.
, and
Morris
,
P. J.
,
1998
, “
Acoustic Scattering From Two-and Three-Dimensional Bodies
,”
J. Comput. Acoust.
,
6
(
03
), pp.
357
375
.10.1142/S0218396X98000247
4.
Liu
,
Q.
, and
Vasilyev
,
O. V.
,
2007
, “
A Brinkman Penalization Method for Compressible Flows in Complex Geometries
,”
J. Comput. Phys.
,
227
(
2
), pp.
946
966
.10.1016/j.jcp.2007.07.037
5.
Seo
,
J. H.
, and
Mittal
,
R.
,
2011
, “
A High-Order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Complex Geometries
,”
J. Comput. Phys.
,
230
(
4
), pp.
1000
1019
.10.1016/j.jcp.2010.10.017
6.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and
Von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.10.1016/j.jcp.2008.01.028
7.
Seo
,
J. H.
, and
Moon
,
Y. J.
,
2006
, “
Linearized Perturbed Compressible Equations for Low Mach Number Aeroacoustics
,”
J. Comput. Phys.
,
218
(
2
), pp.
702
719
.10.1016/j.jcp.2006.03.003
8.
Peskin
,
C. S.
,
1972
, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
(
2
), pp.
252
271
.10.1016/0021-9991(72)90065-4
9.
Peskin
,
C. S.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
,
25
(
3
), pp.
220
252
.10.1016/0021-9991(77)90100-0
10.
Leveque
,
R. J.
, and
Li
,
Z.
,
1994
, “
The Immersed Interface Method for Elliptic Equations With Discontinuous Coefficients and Singular Sources
,”
SIAM J. Numer. Anal.
,
31
(
4
), pp.
1019
1044
.10.1137/0731054
11.
Xu
,
S.
, and
Wang
,
Z. J.
,
2006
, “
An Immersed Interface Method for Simulating the Interaction of a Fluid With Moving Boundaries
,”
J. Comput. Phys.
,
216
(
2
), pp.
454
493
.10.1016/j.jcp.2005.12.016
12.
Fedkiw
,
R. P.
,
Aslam
,
T.
,
Merriman
,
B.
, and
Osher
,
S.
,
1999
, “
A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)
,”
J. Comput. Phys.
,
152
(
2
), pp.
457
492
.10.1006/jcph.1999.6236
13.
Angot
,
P.
,
Bruneau
,
C. H.
, and
Fabrie
,
P.
,
1999
, “
A Penalization Method to Take Into Account Obstacles in Incompressible Viscous Flows
,”
Numer. Math.
,
81
(
4
), pp.
497
520
.10.1007/s002110050401
14.
Sun
,
X.
,
Jiang
,
Y.
,
Liang
,
A.
, and
Jing
,
X.
,
2012
, “
An Immersed Boundary Computational Model for Acoustic Scattering Problems With Complex Geometries
,”
J. Acoust. Soc. Am.
,
132
(
5
), pp.
3190
3199
.10.1121/1.4757747
15.
Peskin
,
C. S.
,
2002
, “
The Immersed Boundary Method
,”
Acta Numer.
,
11
, pp.
479
517
.10.1017/S0962492902000077
16.
Tam
,
C. K. W.
, and
Webb
,
J. C.
,
1993
, “
Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics
,”
J. Comput. Phys.
,
107
(
2
), pp.
262
281
.10.1006/jcph.1993.1142
17.
Hu
,
F. Q.
,
Hussaini
,
M. Y.
, and
Manthey
,
J. L.
,
1996
, “
Low-Dissipation and Low-Dispersion Runge–Kutta Schemes for Computational Acoustics
,”
J. Comput. Phys.
,
124
(
1
), pp.
177
191
.10.1006/jcph.1996.0052
18.
Freund
,
J. B.
,
1997
, “
Proposed Inflow/Outflow Boundary Condition for Direct Computation of Aerodynamic Sound
,”
AIAA J.
,
35
(
4
), pp.
740
742
.10.2514/2.167
19.
Tam
,
C. K. W.
, and
Hardin
,
J. C.
, eds.,
1997
,
Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems
, Tallahassee, FL, November 4–5, NASA Technical Report No. NASA-CP-3352.
20.
Reymen
,
Y.
,
Baelmans
,
M.
, and
Desmet
,
W.
,
2008
, “
Efficient Implementation of Tam and Auriault's Time-Domain Impedance Boundary Condition
,”
AIAA J.
,
46
(
9
), pp.
2368
2376
.10.2514/1.35876
21.
Tam
,
C. K. W.
, and
Auriault
,
L.
,
1996
, “
Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics
,”
AIAA J.
,
34
(
5
), pp.
917
923
.10.2514/3.13168
22.
Morse
,
P. M.
, and
Ingard
,
K. U.
,
1968
,
Theoretical Acoustics
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.