A general modeling method is developed for the vibroacoustic analysis of an arbitrarily restrained rectangular plate backed by a cavity with general wall impedance. The present method provides a uniform way to obtain the solution of the coupled structure-cavity system, making changes of both boundary conditions of the plate and impedance of the cavity walls as simple as the modifications of geometrical or material parameters without requiring any altering of the whole solution procedure. With the displacement of the plate and acoustic pressure in the cavity expanded as double and triple Chebyshev polynomial series, respectively, a simple yet efficient solution to the problem of the modal and vibroacoustic behavior of the coupled system is obtained under the Rayleigh–Ritz frame. The current method can be applied to handle strong structural-acoustic coupling cases and this is illustrated explicitly by considering one case with a shallow cavity and very thin plate while the other with a water-filled cavity. The spatial matching of velocity at the interface is checked by numerical examples. The excellent orthogonal and complete properties of the Chebyshev series representations enable excellent accuracy and numerical stability. An experiment is conducted to validate the present method. In addition, the accuracy and reliability of the current method are also extensively validated by numerical examples and comparisons with theoretical solutions, finite element results, and results available in the literature. The effects of several key parameters are analyzed, including structural boundary conditions, plate thickness, cavity depth, and wall impedance.

References

References
1.
Lyon
,
R. H.
,
1963
, “
Noise Reduction of Rectangular Enclosure With One Flexible Wall
,”
J. Acoust. Soc. Am.
,
35
(
11
), pp.
1791
1797
.10.1121/1.1918822
2.
Pretlove
,
A. J.
,
1966
, “
Forced Vibrations of a Rectangular Panel Backed by a Closed Rectangular Cavity
,”
J. Sound Vib.
,
3
(
3
), pp.
252
261
.10.1016/0022-460X(66)90094-0
3.
Bhattacharya
,
M. C.
, and
Crocker
M. J.
,
1969
, “
Forced Vibration of a Panel and Radiation of Sound Into a Room
,”
Acustica
,
22
(
5
), pp.
275
294
.
4.
Dowell
,
E. H.
,
Gorman
,
G. F.
, and
Smith
D. A.
,
1977
, “
Acoustoelasticity: General Theory, Acoustic Natural Modes and Forced Response to Sinusoidal Excitation, Including Comparisons With Experiment
,”
J. Sound Vib.
,
52
(
4
), pp.
519
541
.10.1016/0022-460X(77)90368-6
5.
Guy
,
R. W.
,
1979
, “
The Steady State Transmission of Sound at Normal and Oblique Incidence Through a Thin Panel Backed by a Rectangular Room, a Multimodal Analysis
,”
Acustica
,
43
(
5
), pp.
295
304
.
6.
Guy
,
R. W.
,
1980
, “
Pressure Developed Within a Cavity Backing a Finite Panel When Subjected to External Transient Excitation
,”
J. Acoust. Soc. Am.
,
68
(
6
), pp.
1736
1747
.10.1121/1.385208
7.
Qaisi
,
M.
,
1988
, “
Free Vibrations of a Rectangular Plate-Cavity System
,”
Appl. Acoust.
,
24
(
1
), pp.
49
61
.10.1016/0003-682X(88)90070-9
8.
Fahy
,
F. J.
,
1985
,
Sound and Structural Vibration: Radiation, Transmission and Response
,
Academic
,
New York
, pp.
241
269
.
9.
Pan
,
J.
, and
Bies
,
D. A.
,
1990
, “
The Effect of Fluid-Structural Coupling on Sound Waves in an Enclosure—Theoretical Part
,”
J. Acoust. Soc. Am.
,
87
(
2
), pp.
691
707
.10.1121/1.398939
10.
Rajalingham
,
C.
,
Bhat
,
R. B.
, and
Xistris
,
G. D.
,
1995
, “
Natural Vibration of a Cavity Backed Rectangular Plate Using a Receptor-Rejector System
,”
ASME J. Vib. Acoust.
,
117
(
4
), pp.
416
423
.10.1115/1.2874473
11.
Kim
,
S. M.
, and
Brennan
,
M. J.
,
1999
, “
A Compact Matrix Formulation Using the Impedance and Mobility Approach for the Analysis of Structural-Acoustic Systems
,”
J. Sound Vib.
,
223
(
1
), pp.
97
113
.10.1006/jsvi.1998.2096
12.
Al-Bassyiouni
,
M.
, and
Balachandran
,
B.
,
2005
, “
Sound Transmission Through a Flexible Panel Into an Enclosure: Structural-Acoustics Model
,”
J. Sound Vib.
,
284
(
1–2
), pp.
467
486
.10.1016/j.jsv.2004.06.040
13.
Li
,
Y. Y.
, and
Cheng
,
L.
,
2004
, “
Modifications of Acoustic Modes and Coupling Due to a Leaning Wall in a Rectangular Cavity
,”
J. Acoust. Soc. Am.
,
116
(
6
), pp.
3312
3318
.10.1121/1.1823331
14.
Li
,
Y. Y.
, and
Cheng
,
L.
,
2007
, “
Vibro-Acoustic Analysis of a Rectangular-Like Cavity With a Tilted Wall
,”
Appl. Acoust.
,
68
(
7
), pp.
739
751
.10.1016/j.apacoust.2006.04.005
15.
Tanaka
,
N.
,
Takara
,
Y.
, and
Iwamoto
H.
,
2012
, “
Eigenpairs of a Coupled Rectangular Cavity and Its Fundamental Properties
,”
J. Acoust. Soc. Am.
,
131
(
3
), pp.
1910
1921
.10.1121/1.3682046
16.
Pan
,
J.
,
Hansen
,
C. H.
, and
Bies
,
D. A.
,
1990
, “
Active Control of Noise Transmission Through a Panel Into a Cavity: I. Analytical Study
,”
J. Acoust. Soc. Am.
,
87
(
5
), pp.
2098
2108
.10.1121/1.399555
17.
Pan
,
J.
,
Hansen
,
C. H.
, and
Bies
,
D. A.
,
1991
, “
Active Control of Noise Transmission Through a Panel Into a Cavity: II. Experimental Study
,”
J. Acoust. Soc. Am.
,
90
(
3
), pp.
1488
1492
.10.1121/1.401887
18.
Koshigoe
,
S.
,
Gillis
,
J. T.
, and
Falangas
,
E. T.
,
1993
, “
A New Approach for Active Control of Sound Transmission Through an Elastic Plate Backed by a Rectangular Cavity
,”
J. Acoust. Soc. Am.
,
94
(
2
), pp.
900
907
.10.1121/1.408191
19.
Snyder
,
S. D.
, and
Hansen
,
C. H.
,
1994
, “
The Design of Systems to Actively Control Periodic Sound Transmission Into Enclosed Spaces, Part 1. Analytical Models
,”
J. Sound Vib.
,
170
(
4
), pp.
433
449
.10.1006/jsvi.1994.1077
20.
Kim
,
S. M.
, and
Brennan
,
M. J.
,
2000
, “
Active Control of Harmonic Sound Transmission Into an Acoustic Enclosure Using Both Structural and Acoustic Actuators
,”
J. Acoust. Soc. Am.
,
107
(
5
), pp.
2523
2534
.10.1121/1.428640
21.
Jin
,
G. Y.
,
Liu
,
Z. G.
, and
Yang
,
T. J.
,
2009
, “
Active Control of Sound Transmission Into an Acoustic Cavity Surrounded by More Than One Flexible Plate
,”
Noise Control Eng. J.
,
57
(
3
), pp.
210
220
.10.3397/1.3097762
22.
Lau
,
S. K.
, and
Tang
,
S. K.
,
2003
, “
Active Control on Sound Transmission Into an Enclosure Through a Flexible Boundary With Edges Elastically Restrained Against Translation and Rotation
,”
J. Sound Vib.
,
259
(
3
), pp.
701
710
.10.1006/jsvi.2002.5109
23.
Qiu
,
X. J.
,
Sha
,
J. Z.
, and
Yang
,
J.
,
1995
, “
Mechanisms of Active Control of Noise Transmission Through a Panel Into a Cavity Using a Point Force Actuator on the Panel
,”
J. Sound Vib.
,
182
(
1
), pp.
167
170
.10.1006/jsvi.1995.0188
24.
Hill
,
S. G.
,
Tanaka
,
N.
, and
Iwamoto
,
H.
,
2012
, “
A Generalised Approach for Active Control of Structural—Interior Global Noise: Practical Implementation
,”
J. Sound Vib.
,
331
(
14
), pp.
3227
3239
.10.1016/j.jsv.2012.02.027
25.
Snyder
,
S. D.
, and
Tanaka
,
N.
,
1993
, “
On Feedforward Active Control of Sound and Vibration Using Vibration Error Signals
,”
J. Acoust. Soc. Am.
,
94
(
4
), pp.
2181
2193
.10.1121/1.407489
26.
Sampath
,
A.
, and
Balachandran
,
B.
,
1999
, “
Active Control of Multiple Tones in an Enclosure
,”
J. Acoust. Soc. Am.
,
106
(
1
), pp.
211
225
.10.1121/1.427050
27.
Tanaka
,
N.
, and
Kobayashi
,
K.
,
2006
, “
Cluster Control of Acoustic Potential Energy in a Structural/Acoustic Cavity
,”
J. Acoust. Soc. Am.
,
119
(
5
), pp.
2758
2771
.10.1121/1.2188815
28.
Berry
,
A.
,
Guyader
,
J.-L.
, and
Nicolas
,
J.
,
1990
, “
A General Formulation for the Sound Radiation From Rectangular Baffled Plates With Arbitrary Boundary Conditions
,”
J. Acoust. Soc. Am.
,
88
(
6
), pp.
2792
2802
.10.1121/1.399682
29.
Atalla
,
N.
,
Nicolas
,
J.
, and
Gauthier
,
C.
,
1996
, “
Acoustic Radiation of an Unbaffled Vibrating Plate With General Elastic Boundary Conditions
,”
J. Acoust. Soc. Am.
,
99
(
3
), pp.
1484
1494
.10.1121/1.414727
30.
Cheng
,
L.
, and
Nicolas
,
J.
,
1992
, “
Free Vibration Analysis of a Cylindrical Shell—Circular Plate System With General Coupling and Various Boundary Conditions
,”
J. Sound Vib.
,
155
(
2
), pp.
231
247
.10.1016/0022-460X(92)90509-V
31.
Cheng
,
L.
, and
Nicolas
,
J.
,
1992
, “
Radiation of Sound Into a Cylindrical Enclosure From a Point-Driven End Plate With General Boundary Conditions
,”
J. Acoust. Soc. Am.
,
91
(
3
), pp.
1504
1513
.10.1121/1.402482
32.
Yuan
,
J.
, and
Dickson
,
S. M.
,
1992
, “
The Flexural Vibration of Rectangular Plate Systems Approached by Using Artificial Springs in the Rayleigh–Ritz Method
,”
J. Sound Vib.
,
159
(
1
), pp.
39
55
.10.1016/0022-460X(92)90450-C
33.
Jin
,
G. Y.
,
Ye
,
T. G.
,
Ma
,
X. L.
,
Chen
,
Y. H.
,
Su
,
Z.
, and
Xie
X.
,
2013
,
A Unified Approach for the Vibration Analysis of Moderately Thick Composite Laminated Cylindrical Shells With Arbitrary Boundary Conditions
,”
Int. J. Mech. Sci.
,
75
, pp.
357
376
.10.1016/j.ijmecsci.2013.08.003
34.
Jin
,
G. Y.
,
Chen
,
Y. H.
, and
Liu
,
Z. G.
,
2014
, “
A Chebyshev–Lagrangian Method for Acoustic Analysis of a Rectangular Cavity With Arbitrary Impedance Walls
,”
Appl. Acoust.
,
78
, pp.
33
42
.10.1016/j.apacoust.2013.10.015
35.
Pan
,
J.
,
1999
, “
A Third Note on the Prediction of Sound Intensity
,”
J. Acoust. Soc. Am.
,
105
(
1
), pp.
560
562
.10.1121/1.424592
36.
Zhou
,
D.
,
Cheung
,
Y. K.
,
Au
,
F. T. K.
, and
Lo
,
S. H.
,
2002
, “
Three-Dimensional Vibration Analysis of Thick Rectangular Plates Using Chebyshev Polynomial and Ritz Method
,”
Int. J. Solids Struct.
,
39
(
26
), pp.
6339
6353
.10.1016/S0020-7683(02)00460-2
37.
Zhou
,
D.
,
Au
,
F. T. K.
,
Cheung
,
Y. K.
, and
Lo
,
S. H.
,
2003
, “
Three-Dimensional Vibration Analysis of Circular and Annular Plates Via the Chebyshev–Ritz Method
,”
Int. J. Solids Struct.
,
40
(
12
), pp.
3089
3105
.10.1016/S0020-7683(03)00114-8
38.
Fox
,
L.
, and
Parker
,
I. B.
1968
,
Chebyshev Polynomials in Numerical Analysis
,
Oxford University Press
,
London
, pp.
1
205
.
You do not currently have access to this content.