This paper presents an analytical model for thermoelastic damping (TED) in micromechanical resonators, which is based on entropy generation, a thermodynamic parameter measuring the irreversibility in heat conduction. The analytical solution is derived from the entropy generation equation and provides an accurate estimation of thermoelastic damping in flexural resonators. This solution technique for estimation of thermoelastic damping is applied in beams and plates resonators. The derivation shows that the analytical expression for fully clamped and simply supported plates is similar to that for beams, but not the same as the latter due to different strain and stress fields. The present model is verified by comparing with Zener's approximation and the LR (Lifshitz and Roukes) method. The effect of structural dimensions on entropy generation corresponding to thermoelastic damping is investigated for beam resonators. The results of the present model are found to be in good agreement with the numerical and experimental results.

References

References
1.
Lifshitz
,
R.
, and
Roukes
,
M. L.
,
2000
, “
Thermoelastic Damping in Micro- and Nanomechanical Systems
,”
Phys. Rev. B
,
61
(
8
), pp.
5600
5609
.10.1103/PhysRevB.61.5600
2.
De
,
S. K.
, and
Aluru
,
N. R.
,
2006
, “
Theory of Thermoelastic Damping in Electrostatically Actuated Microstructures
,”
Phys. Rev. B
,
74
(
14
), p.
144305
.10.1103/PhysRevB.74.144305
3.
Chandorkar
,
S. A.
,
Candler
,
R. N.
,
Duwel
,
A.
,
Melamud
,
R.
,
Agarwal
,
M.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
,
2009
, “
Multimode Thermoelastic Dissipation
,”
J. Appl. Phys.
,
105
(
4
), p.
043505
.10.1063/1.3072682
4.
Zener
,
C.
,
1937
, “
Internal Friction in Solids. I. Theory of Internal Friction in Reeds
,”
Phys. Rev.
,
52
(
3
), pp.
230
235
.10.1103/PhysRev.52.230
5.
Zener
,
C.
,
1938
, “
Internal Friction in Solids. II. General Theory of Thermoelastic Internal Friction
,”
Phys. Rev.
,
53
(
1
), pp.
90
99
.10.1103/PhysRev.53.90
6.
Bishop
,
J. E.
, and
Kinra
,
V. K.
,
1997
, “
Elastothermodynamic Damping in Laminated Composites
,”
Int. J. Solids Struct.
,
34
(
9
), pp.
1075
1092
.10.1016/S0020-7683(96)00085-6
7.
Kinra
,
V. K.
, and
Milligan
,
K. B.
,
1994
, “
A 2nd-Law Analysis of Thermoelastic Damping
,”
ASME J. Appl. Mech.
,
61
(
1
), pp.
71
76
.10.1115/1.2901424
8.
Prabhakar
,
S.
, and
Vengallatore
,
S.
,
2008
, “
Theory of Thermoelastic Damping in Micromechanical Resonators With Two-Dimensional Heat Conduction
,”
J. Microelectromech. Syst.
,
17
(
2
), pp.
494
502
.10.1109/JMEMS.2008.916316
9.
Wong
,
S. J.
,
Fox
,
C. H. J.
,
Mcwilliam
,
S.
,
Fell
,
C. P.
, and
Eley
,
R.
,
2004
, “
A Preliminary Investigation of Thermo-Elastic Damping in Silicon Rings
,”
J. Micromech. Microeng.
,
14
(
9
), pp.
S108
S113
.10.1088/0960-1317/14/9/019
10.
Wong
,
S. J.
,
Fox
,
C. H. J.
, and
Mcwilliam
,
S.
,
2006
, “
Thermoelastic Damping of the In-Plane Vibration of Thin Silicon Rings
,”
J. Sound Vib.
,
293
(
1–2
), pp.
266
285
.10.1016/j.jsv.2005.09.037
11.
Vengallatore
,
S.
,
2005
, “
Analysis of Thermoelastic Damping in Laminated Composite Micromechanical Beam Resonators
,”
J. Micromech. Microeng.
,
15
(
12
), pp.
2398
2404
.10.1088/0960-1317/15/12/023
12.
Prabhakar
,
S.
, and
Vengallatore
,
S.
,
2007
, “
Thermoelastic Damping in Bilayered Micromechanical Beam Resonators
,”
J. Micromech. Microeng.
,
17
(
3
), pp.
532
538
.10.1088/0960-1317/17/3/016
13.
Prabhakar
,
S.
, and
Vengallatore
,
S.
,
2009
, “
Thermoelastic Damping in Hollow and Slotted Microresonators
,”
J. Microelectromech. Syst.
,
18
(
3
), pp.
725
735
.10.1109/JMEMS.2009.2016287
14.
Sharma
,
J. N.
, and
Grover
,
D.
,
2011
, “
Thermoelastic Vibrations in Micro-/Nano-Scale Beam Resonators With Voids
,”
J. Sound Vib.
,
330
(
12
), pp.
2964
2977
.10.1016/j.jsv.2011.01.012
15.
Kim
,
S. B.
, and
Kim
,
J. H.
,
2011
, “
Quality Factors for the Nano-Mechanical Tubes With Thermoelastic Damping and Initial Stress
,”
J. Sound Vib.
,
330
(
7
), pp.
1393
1402
.10.1016/j.jsv.2010.10.015
16.
Evoy
,
S.
,
Olkhovets
,
A.
,
Sekaric
,
L.
,
Parpia
,
J. M.
,
Craighead
,
H. G.
, and
Carr
,
D. W.
,
2000
, “
Temperature-Dependent Internal Friction in Silicon Nanoelectromechanical Systems
,”
Appl. Phys. Lett.
,
77
(
15
), pp.
2397
2399
.10.1063/1.1316071
17.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
,
2004
, “
Modeling and Simulations of Thermoelastic Damping in Microplates
,”
J. Micromech. Microeng.
,
14
(
12
), pp.
1711
1717
.10.1088/0960-1317/14/12/016
18.
Hao
,
Z.
,
2008
, “
Thermoelastic Damping in the Contour-Mode Vibrations of Micro- and Nano-Electromechanical Circular Thin-Plate Resonators
,”
J. Sound Vib.
,
313
(
1–2
), pp.
77
96
.10.1016/j.jsv.2007.11.035
19.
Li
,
P.
,
Fang
,
Y.
, and
Hu
,
R.
,
2012
, “
Thermoelastic Damping in Rectangular and Circular Microplate Resonators
,”
J. Sound Vib.
,
331
(
3
), pp.
721
733
.10.1016/j.jsv.2011.10.005
20.
Hao
,
Z. L.
,
Xu
,
Y.
, and
Durgam
,
S. K.
,
2009
, “
A Thermal-Energy Method for Calculating Thermoelastic Damping in Micromechanical Resonators
,”
J. Sound Vib.
,
322
(
4–5
), pp.
870
882
.10.1016/j.jsv.2008.12.005
21.
Tai
,
Y. P.
,
Li
,
P.
, and
Zuo
,
W. L.
,
2012
, “
An Entropy Based Analytical Model for Thermoelastic Damping in Micromechanical Resonators
,”
Adv. Manuf. Technol. Syst.
,
159
, pp.
46
50
.10.4028/www.scientific.net/AMM.159.46
22.
Boley
,
B. A.
, and
Weiner
,
J. H.
,
1960
,
Theory of Thermal Stresses
,
Wiley
,
New York
.
23.
Roszhart
,
T. V.
,
1990
, “
The Effect of Thermoelastic Internal Friction on the Q of Micromachined Silicon Resonators
,” 4th Techical Digest,
IEEE Solid-State Sensor and Actuator Workshop
, Hilton Head Island, SC, June 4–7, pp.
13
16
.10.1109/SOLSEN.1990.109810
24.
Pourkamali
,
S.
,
Hashimura
,
A.
,
Abdolvand
,
R.
,
Ho
,
G. K.
,
Erbil
,
A.
, and
Ayazi
,
F.
,
2003
, “
High-Q Single Crystal Silicon HARPSS Capacitive Beam Resonators With Self-Aligned Sub-100-nm Transduction Gaps
,”
J. Microelectromech. Syst.
,
12
(
4
), pp.
487
496
.10.1109/JMEMS.2003.811726
You do not currently have access to this content.