For noise and vibration attenuation, various approaches can be employed depending on the frequency range to attenuate. Generally, active or passive piezoelectric techniques are effective in the low-frequency range, while dissipative materials, such as viscoelastic or porous treatments, are efficient for higher-frequency domain. In this work, a reduced-order model is developed for the approximation of a fully coupled electromechanical-acoustic system using modal projection techniques. The problem consists of an elastic structure with surface-mounted piezoelectric patches coupled with a compressible inviscid fluid. The piezoelectric elements, connected with resonant shunt circuits, are used for the vibration damping of the coupled system. Numerical examples are presented in order to illustrate the accuracy and the versatility of the proposed reduced-order model, especially in terms of prediction of attenuation.

References

1.
Balachandran
,
B.
,
Sampath
,
A.
, and
Park
,
J.
,
1996
, “
Active Control of Interior Noise in a Three-Dimensional Enclosure
,”
Smart Mater. Struct.
,
5
(
1
), pp.
89
97
.10.1088/0964-1726/5/1/010
2.
Ahmadian
,
M.
,
Jeric
,
K.
, and
Inman
,
D.
,
2001
, “
An Experimental Evaluation of Smart Damping Materials for Reducing Structural Noise and Vibrations
,”
ASME J. Vibr. Acoust.
,
123
(
4
), pp.
533
536
.10.1115/1.1389459
3.
Kim
,
J.
,
Ko
,
B.
,
Lee
,
J. K.
, and
Cheong
,
C.
,
1999
, “
Finite Element Modelling of a Piezoelectric Smart Structure for the Cabin Noise Problem
,”
Smart Mater. Struct.
,
8
(
3
), pp.
380
389
.10.1088/0964-1726/8/3/309
4.
Lefevre
,
J.
, and
Gabbert
,
U.
,
2005
, “
Finite Element Modeling of Vibro-Acoustic Systems for Active Noise Reduction
,”
Tech. Mech.
,
25
(
3-4
), pp.
241
247
.
5.
Ro
,
J.
, and
Baz
,
A.
,
1999
, “
Control of Sound Radiation From a Plate Into an Acoustic Cavity Using Active Constrained Layer Damping
,”
Smart Mater. Struct.
,
8
(
3
), pp.
292
300
.10.1088/0964-1726/8/3/302
6.
Kaljevic
,
I.
, and
Saravanos
,
D.
,
1997
, “
Steady State Response of Acoustic Cavities Bounded by Piezoelectric Composite Shell Structures
,”
J. Sound Vibr.
,
204
(
3
), pp.
459
476
.10.1006/jsvi.1996.0911
7.
Gopinathan
,
S.
,
Varadan
,
V.
, and
Varadan
,
V.
,
2000
, “
Finite Element/Boundary Element Simulation of Interior Noise Control Using Active-Passive Control Technique
,”
Proc. SPIE
,
3984
, pp.
22
32
.10.1117/12.388767
8.
Hagood
,
N. W.
, and
Flotow
,
A. V.
,
1991
, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vibr.
,
146
(
2
), pp.
243
268
.10.1016/0022-460X(91)90762-9
9.
Lesieutre
,
G. A.
,
2008
, “
Vibration Damping and Control Using Shunted Piezoelectric Materials
,”
Shock Vibr. Dig.
,
30
(
3
), pp.
187
195
.10.1177/058310249803000301
10.
Guyomar
,
D.
,
Richard
,
T.
, and
Richard
,
C.
,
2008
, “
Sound Wave Transmission Reduction Through a Plate Using a Piezoelectric Synchronized Switch Damping Technique
,”
J. Intell. Mater. Syst. Struct.
,
19
(
7
), pp.
791
803
.10.1177/1045389X07081055
11.
Larbi
,
W.
,
Deü
,
J.-F.
,
Ciminello
,
M.
, and
Ohayon
,
R.
,
2010
, “
Structural- Acoustic Vibration Reduction Using Switched Shunt Piezoelectric Patches: A Finite Element Analysis
,”
ASME J. Vibr. Acoust.
,
132
(
5
), p.
051006
.10.1115/1.4001508
12.
Craggs
,
A.
, and
Stead
,
G.
,
1976
, “
Sound Transmission Between Enclosures—A Study Using Plate and Acoustic Finite Elements
,”
Acustica
,
35
(
2
), pp.
89
98
.
13.
Daniel
,
W.
,
1980
, “
Performance of Reduction Methods for Fluid-Structure and Acoustic Eigenvalue Problems
,”
Int. J. Numer. Methods Eng.
,
15
(
11
), pp.
1585
1594
.10.1002/nme.1620151102
14.
Morand
,
H.
, and
Ohayon
,
R.
,
1995
,
Fluid-Structure Interaction
,
Wiley
,
New York
.
15.
Ohayon
,
R.
,
2004
, “
Reduced Models for Fluid-Structure Interaction Problems
,”
Int. J. Numer. Methods Eng.
,
60
(
1
), pp.
139
152
.10.1002/nme.957
16.
Al-Bassyiouni
,
M.
, and
Balachandran
,
B.
,
2005
, “
Sound Transmission Through a Flexible Panel Into an Enclosure: Structural-Acoustics Model
,”
J. Sound Vibr.
,
284
(
1-2
), pp.
467
486
.10.1016/j.jsv.2004.06.040
17.
Puri
,
R. S.
, and
Morrey
,
D.
,
2011
, “
A Krylov–Arnoldi Reduced Order Modelling Framework for Efficient, Fully Coupled, Structural–Acoustic Optimization
,”
Struct. Multidisc. Optim.
,
43
(
4
), pp.
495
517
.10.1007/s00158-010-0588-5
18.
Deü
,
J.-F.
,
Larbi
,
W.
, and
Ohayon
,
R.
,
2008
, “
Piezoelectric Structural Acoustic Problems: Symmetric Variational Formulations and Finite Element Results
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
19-20
), pp.
1715
1724
.10.1016/j.cma.2007.04.014
19.
Thomas
,
O.
,
Deü
,
J.-F.
, and
Ducarne
,
J.
,
2009
, “
Vibrations of an Elastic Structure With Shunted Piezoelectric Patches: Efficient Finite Element Formulation and Electromechanical Coupling Coefficients
,”
Int. J. Numer. Methods Eng.
,
80
(
2
), pp.
235
268
.10.1002/nme.2632
20.
Corr
,
L.
, and
Clark
,
W.
,
2002
, “
Comparison of Low-Frequency Piezoelectric Switching Shunt Techniques for Structural Damping
,”
Smart Mater. Struct.
,
11
(
3
), pp.
370
376
.10.1088/0964-1726/11/3/307
21.
Thomas
,
O.
,
Ducarne
,
J.
, and
Deü
,
J.-F.
,
2012
, “
Performance of Piezoelectric Shunts for Vibration Reduction
,”
Smart Mater. Struct.
,
21
(
1
), p.
015008
.10.1088/0964-1726/21/1/015008
22.
Rumpler
,
R.
,
Legay
,
A.
, and
Deü
,
J.-F.
,
2011
, “
Performance of a Restrained-Interface Substructuring FE Model for Reduction of Structural–Acoustic Problems With Poroelastic Damping
,”
Comput. Struct.
,
89
(
23-24
), pp.
2233
2248
.10.1016/j.compstruc.2011.08.012
23.
Reddy
,
J.
,
2004
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
,
CRC
,
Boca Raton, FL
.
24.
Ohayon
,
R.
, and
Soize
,
C.
,
1998
,
Structural Acoustics and Vibration. Mechanical Models, Variational Formulations and Discretization
,
Academic
,
London
.
You do not currently have access to this content.