This paper describes a design process that produces a small volume Helmholtz resonator capable of achieving high transmission loss across a desired frequency range. A multiobjective optimization formulation was used to design a Helmholtz resonator with a flexible end plate. The optimization formulation generated a Pareto curve of design solutions that quantify the trade-off between the optimization goals: minimum resonator volume and maximum transmission loss across a specified frequency range. The optimization problem was formulated and solved in the following manner. First, a mathematical formulation for the transmission loss of the Helmholtz resonator with a flexible plate was completed based on the resonator design parameters. Then, the weighted transmission loss across a specified frequency range and a minimum resonator volume were defined as optimization objectives. Finally, the Pareto curve of optimum design solutions was calculated using a gradient-based approach via the ɛ-constraint method. The optimization results allow the designer to select resonator design parameters that meet the requirements for both transmission loss and resonator volume. To validate the optimization results, two optimal Helmholtz resonators were manufactured and experimentally confirmed.

References

References
1.
Helmholtz
,
H.
,
1862
, On the Sensations of Tone as a Physiological Basis for the Theory of Sound, Longmans Green and Co., London.
2.
Sun
,
J.
,
Jolly
,
M.
, and
Norris
,
M.
,
1995
, “
Passive, Adaptive and Active Tuned Vibration Absorbers: A Survey
,”
ASME J. Mech. Des.
,
117
(
B
), pp.
234
242
.10.1115/1.2836462
3.
Zeninari
,
V.
,
Kapitanov
,
V.
,
Courtois
,
D.
, and
Ponomarev
,
Y.
,
1999
, “
Design and Characteristics of a Differential Helmholtz Resonant Photoacoustic Cell for Infrared Gas Detection
,”
Infrared Phys. Tech.
,
40
(
1
), pp.
1
23
.10.1016/S1350-4495(98)00038-3
4.
Zhao
,
D.
,
A'Barrow
,
C.
,
Morgans
,
A.
, and
Carrotte
,
J.
,
2009
, “
Acoustic Damping of a Helmholtz Resonator With an Oscillating Volume
,”
AIAA J.
,
47
(
7
), pp.
1672
1679
.10.2514/1.39704
5.
Liu
,
F.
,
Phipps
,
A.
,
Horowitz
,
S.
,
Khai
,
N.
,
Cattafesta
,
L.
,
Nishida
,
T.
, and
Sheplak
,
M.
,
2008
, “
Acoustic Energy Harvesting Using an Electromechanical Helmholtz Resonator
,”
J. Acoust. Soc. Am.
,
123
(
4
), pp.
1983
1990
.10.1121/1.2839000
6.
Davis
,
D.
,
Stokes
,
G.
,
Moore
,
D.
, and
Stevens
,
G.
,
1954
, “
Theoretical and Experimental Investigation of Mufflers With Comments on Engine-Exhaust Muffler Design
,” National Advisory Committee for Aeronautics, NACA Report No. 1192.
7.
Bielak
,
G. W.
,
Premo
,
J. W.
, and
Hersh
,
A. S.
,
1999
, “
Advanced Turbofan Duct Liner Concepts
,” National Aeronautics and Space Administration, Report No. NASA/CR-1999-209002.
8.
Tang
,
S.
,
2010
, “
On Sound Transmission Loss Across a Helmholtz Resonator in a Low Mach Number Flow Duct
,”
J. Acoust. Soc. Am.
,
127
(
6
), pp.
3519
3525
.10.1121/1.3409481
9.
Garrelick
,
J. M.
,
1979
, “
The Transmission Loss of a Wall Incorporating an Array of Resonators
,”
J. Acoust. Soc. Am.
,
65
(
S1
), p.
S52
.10.1121/1.2017303
10.
Prydz
,
R. A.
,
Wirt
,
L. S.
, and
Kuntz
,
H. L.
,
1990
, “
Transmission Loss of a Multilayer Panel With Internal Tuned Helmholtz Resonators
,”
J. Acoust. Soc. Am.
,
87
(4), pp.
1597
1602
.10.1121/1.399407
11.
Griffin
,
S.
,
Lane
,
S.
, and
Huybrechts
,
S.
,
2001
, “
Coupled Helmholtz Resonators for Acoustic Attenuation
,”
ASME J. Vib. Acoust.
,
123
(
1
), pp.
11
17
.10.1115/1.1320812
12.
Nudehi
,
S. S.
,
Duncan
,
G. S.
, and
Farooq
,
U.
,
2012
, “
Modeling and Experimental Investigation of a Helmholtz Resonator With a Flexible Plate
,”
ASME J. Vib. Acoust.
,
135
(4), p. 041102.10.1115/1.4023810
13.
Farooq
,
U.
, and
Nudehi
,
S.
,
2008
, “
A Nonlinear Acoustic Resonator
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Las Vegas, NV, September 4–7,
ASME
Paper No. DETC2007-34700, pp.
2015
2022
.10.1115/DETC2007-34700
14.
Horowitz
,
S.
,
Nishida
,
T.
,
Cattafesta
,
L.
, and
Sheplak
,
M.
,
2002
, “
Characterization of a Compliant-Backplate Helmholtz Resonator for an Electromechanical Acoustic Liner
,”
Int. J. Aeroacoust.
,
1
(
2
), pp.
183
205
.10.1260/147547202760236969
15.
Li
,
D.
, and
Cheng
,
L.
,
2007
, “
Acoustically Coupled Model of an Enclosure and a Helmholtz Resonator Array
,”
J. Sound Vib.
,
305
(
1–2
), pp.
272
288
.10.1016/j.jsv.2007.04.009
16.
Unnikrishnan Nair
,
S.
,
Shete
,
C.
,
Subramoniam
,
A.
,
Handoo
,
K.
, and
Padmanabhan
,
C.
,
2010
, “
Experimental and Computational Investigation of Coupled Resonator-Cavity Systems
,”
Appl. Acoust.
,
71
(
1
), pp.
61
67
.10.1016/j.apacoust.2009.07.009
17.
Liu
,
F.
,
Horowitz
,
S.
,
Cattafesta
,
L.
, and
Sheplak
,
M.
,
2006
, “
Optimization of an Electromechanical Helmholtz Resonator
,”
Aerospace Eng.
,
6250
(
352
), pp.
1
12
.10.2514/6.2006-2524
18.
Ingard
,
U.
,
1953
, “
On the Theory and Design of Acoustic Resonators
,”
J. Acoust. Soc. Am.
,
25
(
6
), pp.
1037
1061
.10.1121/1.1907235
19.
Henrique
,
L.
,
Antunes
,
J.
,
Inacio
,
O.
, and
Paulino
,
J.
,
2005
, “
Application of Optimization Techniques for Acoustical Resonators
,” Twelfth International Congress on Sound and Vibration (ICSV12), Lisbon, Portugal, July 11–14.
20.
Inacio
,
O.
,
Henrique
,
L.
, and
Antunes
,
J.
,
2007
, “
Design of Duct Cross Sectional Areas in Bass-Trapping Resonators for Control Rooms
,”
Noise Contr. Eng. J.
,
55
(
2
), pp.
172
182
.10.3397/1.2435461
21.
Yu
,
G.
,
2009
, “
Acoustic Resonators for Noise Control in Enclosures: Modelling, Design and Optimization
,” Ph.D. thesis, Hong Kong Polytechnic University, Hong Kong.
22.
Liu
,
F.
,
2007
, “
A Tunable Electromechanical Helmholtz Resonator
,” Ph.D. thesis, University of Florida, Gainesville, FL.
23.
Papila
,
M.
,
Haftka
,
R.
,
Nishida
,
T.
, and
Sheplak
,
M.
,
2006
, “
Piezoresistive Microphone Design Pareto Optimization: Tradeoff Between Sensitivity and Noise Floor
,”
J. MEMS
,
15
(
6
), pp.
1632
1943
.10.1109/JMEMS.2006.883884
24.
Deb
,
K.
,
2001
, Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, Hoboken, NJ.
25.
Steuer
,
R. E.
,
1986
, Multiple Criteria Optimization: Theory, Computation, and Application, John Wiley and Sons, Hoboken, NJ.
26.
Chankong
,
V.
, and
Haimes
,
Y. Y.
,
1983
,
Multi-Objective Decision Making: Theory and Methodology
,
North-Holland
, Amsterdam.
27.
Miettinen
,
K.
,
1999
,
Nonlinear Multi-Objective Optimization
,
Kluwer Academic
, New York.
28.
Kurdi
,
M.
,
Beran
,
P.
,
Stanford
,
B.
, and
Snyder
,
S.
,
2009
, “
Optimal Actuation of Nonlinear Resonant Systems
,”
J. Struct. Multidisc. Optim.
,
41
(
1
), pp.
65
86
.10.1007/s00158-009-0398-9
29.
Rao
,
S. S.
,
2007
,
Vibrations of Continuous Systems
,
John Wiley & Sons, Hoboken, NJ
.
30.
Temkin
,
S.
,
1981
,
Elements of Acoustics
,
John Wiley & Sons, Hoboken, NJ
.
31.
MathWorks, 2014, “MATLAB and Simulink for Technical Computing,” http://www.mathworks.com/
32.
Selamet
,
A.
,
Radavich
,
P.
,
Dickey
,
N.
, and
Novak
,
J.
,
1997
, “
Circular Concentric Helmholtz Resonators
,”
J. Acoust. Soc. Am.
,
101
(
1
), pp.
41
51
.10.1121/1.417986
33.
Nowak
,
D.
,
Bellucci
,
V.
, and
Paschereit
,
C.
,
2001
, “
Numerical Prediction of the Natural Frequencies of the Helmholtz Resonator Coupled With Enclosure Cavity
,” 2nd European Conference on Computational Mechanics (ECCM-2001), Cracow, Poland, June 26–29, pp. 850–851.
34.
National Instruments, 2014, “Test, Measurement, and Embedded Systems,” http://www.ni.com/
35.
Tao
,
Z.
, and
Seybert
,
A.
,
2003
, “
A Review of Current Techniques for Measuring Muffler Transmission Loss
,”
SAE
Technical Paper No. 2003-01-1653.10.4271/2003-01-1653
36.
Chung
,
J.
, and
Blaser
,
D.
,
1980
, “
Transfer Function Method of Measuring In-Duct Acoustic Properties. I. Theory
,”
J. Acoust. Soc. Am.
,
68
(3), pp.
907
913
.10.1121/1.384778
37.
Munjal
,
M.
, and
Doige
,
A.
,
1990
, “
Theory of a Two Source-Location Method for Direct Experimental Evaluation of the Four-Pole Parameters of an Aeroacoustic Element
,”
J. Sound Vib.
,
141
(
2
), pp.
323
333
.10.1016/0022-460X(90)90843-O
38.
Bishop
,
R.
, and
Johnson
,
D.
,
2011
,
The Mechanics of Vibration
,
Cambridge University Press, Cambridge, UK
.
39.
Meirovitch
,
L.
,
1996
,
Principles and Techniques of Vibrations
,
Prentice-Hall
, Upper Saddle River, NJ.
You do not currently have access to this content.