The stationary probability density function (PDF) solution of random oscillators with correlated additive and multiplicative Gaussian excitations is investigated in this paper. The correlation between additive and multiplicative Gaussian excitations is taken into account. As a result, the generalized Fokker-Planck-Kolmogorov (FPK) equation is expressed with the independent part and the correlated part, which can be solved by the exponential-polynomial closure (EPC) method. The linear and nonlinear oscillators under correlated additive and multiplicative Gaussian white noise excitations are investigated. Two cases of different correlated additive and multiplicative excitations are considered. Compared with the results in the case of independent external and parametric excitations, unsymmetrical PDFs and nonzero means of system responses can be obtained.

References

References
1.
Soong
,
T. T.
,
1973
,
Random Differential Equations in Science and Engineering
,
Academic
,
New York
.
2.
Abou-Rayan
,
A. M.
, and
Nayfeh
,
A. H.
,
1993
, “
Stochastic Responses of a Buckled Beam to External and Parametric Random Excitations
,”
AIAA/ASME/ASCE/AHS/ASC 34th Structures, Structural Dynamics, and Materials Conference, La Jolla, CA
, April 19–22,
AIAA
Paper No. 93-1425-CP, pp.
1030
1040
.10.2514/6.1993-1425
3.
Dimentberg
,
M. F.
,
1982
, “
An Exact Solution to a Certain Non-Linear Random Vibration Problem
,”
Int. J. Non-Linear Mech.
,
17
(
4
), pp.
231
236
.10.1016/0020-7462(82)90023-3
4.
Caughey
,
T. K.
, and
Ma
,
F.
,
1982
, “
The Steady State Response of a Class of Dynamical Systems to Stochastic Excitation
,”
ASME J. Appl. Mech.
,
49
(
3
), pp.
629
632
.10.1115/1.3162538
5.
Yong
,
Y.
, and
Lin
,
Y. K.
,
1987
, “
Exact Stationary-Response Solution for Second Order Nonlinear Systems Under Parametric and External White-Noise Excitations
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
414
418
.10.1115/1.3173029
6.
Lin
,
Y. K.
, and
Cai
,
G. Q.
,
1988
, “
Exact Stationary Response Solution for Second Order Nonlinear Systems Under Parametric and External White Noise Excitations: Part II
,”
ASME J. Appl. Mech.
,
55
(
3
), pp.
702
705
.10.1115/1.3125852
7.
Lin
,
Y. K.
, and
Cai
,
G. Q.
,
1995
,
Probability Theory of Structural Dynamics
,
McGraw-Hill
,
New York
.
8.
Wang
,
R. B.
, and
Zhang
,
Z. K.
,
1998
. “
Exact Stationary Response Solutions of Six Classes of Nonlinear Stochastic Systems Under Stochastic Parametric and External Excitations
,”
ASCE J. Eng. Mech.
,
124
(
1
), pp.
18
23
.10.1061/(ASCE)0733-9399(1998)124:1(18)
9.
Stratonovich
,
R. L.
,
1963
,
Topics in the Theory of Random Noise
,
Gordon and Breach
,
New York
.
10.
Lutes
,
L. D.
,
1970
, “
Approximate Technique for Treating Random Vibration of Hysteretic Systems
,”
J. Acoust. Soc. Am.
,
48
(1B), pp.
299
306
.10.1121/1.1912128
11.
Young
,
G. E.
, and
Chang
,
R. J.
,
1987
, “
Prediction of the Response of Non-Linear Oscillators Under Stochastic Parametric and External Excitations
,”
Int. J. Non-Linear Mech.
,
22
(
2
), pp.
151
160
.10.1016/0020-7462(87)90017-5
12.
Cai
,
G. Q.
, and
Lin
,
Y. K.
,
1988
, “
A New Approximate Solution Technique for Randomly Excited Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
,
23
(
5–6
), pp.
409
420
.10.1016/0020-7462(88)90038-8
13.
Cai
,
G. Q.
,
Lin
,
Y. K.
, and
Elishakoff
,
I.
,
1992
, “
A New Approximate Solution Technique for Randomly Excited Non-Linear Oscillators—II
,”
Int. J. Non-Linear Mech.
,
27
(
6
), pp.
969
979
.10.1016/0020-7462(92)90049-D
14.
Sobczyk
,
K.
, and
Trȩbicki
,
J.
,
1990
, “
Maximum Entropy Principle in Stochastic Dynamics
,”
Prob. Eng. Mech.
,
5
(
3
), pp.
102
110
.10.1016/0266-8920(90)90001-Z
15.
Er
,
G. K.
,
1998
, “
An Improved Closure Method for Analysis of Nonlinear Stochastic Systems
,”
Nonlinear Dyn.
,
17
(3), pp.
285
297
.10.1023/A:1008346204836
16.
Er
,
G. K.
,
2000
, “
The Probabilistic Solutions to Nonlinear Random Vibrations of Multi-Degree-of-Freedom Systems
,”
ASME J. Appl. Mech.
,
67
(2), pp.
355
359
.10.1115/1.1304842
17.
Er
,
G. K.
,
Guo
,
S.-S.
, and
Iu
,
V. P.
,
2012
, “
Probabilistic Solutions of the Stochastic Oscillators With Even Nonlinearity in Displacement
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
054501
.10.1115/1.4006230
18.
Booton
,
R. C.
,
1954
, “
Nonlinear Control Systems With Random Inputs
,”
IRE Trans. Circuit Theory
,
1
(
1
), pp.
9
18
.10.1109/TCT.1954.6373354
19.
Caughey
,
T. K.
,
1959
, “
Response of a Nonlinear String to Random Loading
,”
ASME J. Appl. Mech.
,
26
(
3
), pp.
341
344
.
20.
Iwan
,
W. D.
,
1973
, “
A Generalization of the Concept of Equivalent Linearization
,”
Int. J. Non-Linear Mech.
,
8
(
3
), pp.
279
287
.10.1016/0020-7462(73)90049-8
21.
Bover
,
D. C. C.
,
1978
. “
Moment Equation Methods for Nonlinear Stochastic Systems
,”
J. Math. Anal. Appl.
,
65
(
2
), pp.
306
320
.10.1016/0022-247X(78)90182-8
22.
Ibrahim
,
R. A.
,
1978
, “
Stationary Response of a Randomly Parametric Excited Nonlinear System
,”
ASME J. Appl. Mech.
,
45
(
4
), pp.
910
916
.10.1115/1.3424440
23.
Wu
,
W. F.
, and
Lin
,
Y. K.
,
1984
, “
Cumulant-Neglect Closure for Non-Linear Oscillators Under Random Parametric and External Excitations
,”
Int. J. Non-Linear Mech.
,
19
(
4
), pp.
349
362
.10.1016/0020-7462(84)90063-5
24.
Ibrahim
,
R. A.
, and
Soundararajan
,
A.
,
1985
, “
An Improved Approach for Random Parametric Response of Dynamic Systems With Non-Linear Inertia
,”
Int. J. Non-Linear Mech.
,
20
(
4
), pp.
309
323
.10.1016/0020-7462(85)90039-3
25.
Spanos
,
P. D.
, and
Kougioumtzoglou
,
I. A.
,
2012
, “
Harmonic Wavelets Based Statistical Linearization for Response Evolutionary Power Spectrum Determination
,”
Probab. Eng. Mech.
,
27
(1), pp.
57
68
.10.1016/j.probengmech.2011.05.008
26.
Wehner
,
M. F.
, and
Wolfer
,
W. G.
,
1983
. “
Numerical Evaluation of Path-Integral Solutions to Fokker-Planck Equations
,”
Phys. Rev. A
,
27
(
5
), pp.
2663
2670
.10.1103/PhysRevA.27.2663
27.
Naess
,
A.
, and
Johnson
,
J. M.
1992
, “
Response Statistics of Nonlinear Dynamic Systems by Path Integration
,”
Nonlinear Stochastic Mechanics
, Proceedings of the IUTAM Symposium on Nonlinear Stochastic Mechanics, Turin, Italy, July 1–5, N. Bellomo and
F.
Casciati
, eds.,
Springer
,
Berlin
, pp. 401–
414
.10.1007/978-3-642-84789-9_35
28.
Naess
,
A.
, and
Moc
,
V.
,
2000
, “
Efficient Path Integration Methods for Nonlinear Dynamics Systems
,”
Probab. Eng. Mech.
,
15
(2), pp.
221
231
.10.1016/S0266-8920(99)00031-4
29.
Chaichian
,
M.
, and
Demichev
,
A.
,
2001
,
Path Integrals in Physics Vol. I: Stochastic Processes and Quantum Mechanics
,
IOP
,
Bristol
, UK.
30.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2012
, “
An Analytical Wiener Path Integral Technique for Non-Stationary Response Determination of Nonlinear Oscillators
,”
Probab. Eng. Mech.
,
28
, pp.
125
131
.10.1016/j.probengmech.2011.08.022
31.
Shiau
,
L. C.
, and
Wu
,
T. Y.
,
1996
, “
A Finite-Element Method for Analysis of a Non-Linear System Under Stochastic Parametric and External Excitations
,”
Int. J. Non-Linear Mech.
,
31
(
2
), pp.
193
201
.10.1016/0020-7462(95)00049-6
32.
Shinozuka
,
M.
,
1972
, “
Monte Carlo Solution of Structural Dynamics
,”
Comput. Struct.
,
2
(
5–6
), pp.
855
874
.10.1016/0045-7949(72)90043-0
33.
Harris
,
C. J.
,
1979
, “
Simulation of Multivariate Non-Linear Stochastic System
,”
Int. J. Num. Mech. Eng.
,
14
(1), pp.
37
50
.10.1002/nme.1620140104
34.
Spanos
,
P.-T. D.
,
1981
, “
Monte Carlo Simulations of Responses of Non-Symmetric Dynamic System to Random Excitations
,”
Comput. Struct.
,
13
(
1–3
), pp.
371
376
.10.1016/0045-7949(81)90146-2
35.
Kloeden
,
P. E.
, and
Platen
,
E.
,
1995
,
Numerical Solution of Stochastic Differential Equations
,
Springer
,
Berlin
.
36.
Er
,
G. K.
,
2011
, “
Methodology for the Solutions of Some Reduced Fokker-Planck Equations in High Dimensions
,”
Ann. Phys. (Berlin)
,
523
(3), pp.
247
258
.10.1002/andp.201010465
37.
Er
,
G. K.
, and
Iu
,
V. P.
,
2012
, “
State-Space-Split Method for Some Generalized Fokker-Planck-Kolmogorov Equations in High Dimensions
,”
Phys. Rev. E
,
85
(
6
), p.
067701
.10.1103/PhysRevE.85.067701
38.
Er
,
G. K.
,
2012
, “
The Probabilistic Solutions of Some Nonlinear Stretched Beams Excited by Filtered White Noise
,”
Procedia IUTAM
,
6
, pp.
141
150
.10.1016/j.piutam.2013.01.016
39.
Ranganathan
,
R.
,
1990
,
Reliability Analysis and Design of Structures
,
McGraw-Hill
,
New Delhi
, pp.
165
168
.
You do not currently have access to this content.