Nonlinear viscoelastic behavior is a characteristic of many engineering materials including flexible polyurethane foam, yet it is difficult to develop dynamic models of systems that include these materials and are able to predict system behavior over a wide range of excitations. This research is focused on a specific example system in the form of a pinned-pinned beam interacting with a viscoelastic foundation. Two cases are considered: (1) the beam and the foundation are glued so that they are always in contact and the foundation can undergo both tension and compression, and (2) the beam is not glued to the foundation and the foundation reacts only in compression so that the contact region changes with beam motion. Static as well as dynamic transverse and axial forces act on the beam, and the Galerkin method is used to derive modal amplitude equations for the beam-foundation system. In the second case of the beam on tensionless foundation, loss of contact between the beam and the foundation can arise and determination of the loss-of-contact points is integrated into the solution procedure through a constraint equation. The static responses for both cases are examined as a function of the foundation nonlinearity and loading conditions. The steady-state response of the system subject to static and harmonic loads is studied by using numerical direct time-integration. Numerical challenges and the accuracy of this approach are discussed, and predictions of solutions by the three-mode and five-mode approximate models are compared to establish convergence of solutions. Frequency responses are studied for a range of foam nonlinearities and loading conditions.

References

References
1.
White
,
S. W.
,
Kim
,
S. K.
,
Bajaj
,
A. K.
,
Davies
,
P.
,
Showers
,
D. K.
, and
Liedtke
,
P. E.
,
2000
, “
Experimental Techniques and Identification of Nonlinear and Viscoelastic Properties of Flexible Polyurethane Foam
,”
Nonlinear Dyn.
,
22
(
3
), pp.
281
313
.10.1023/A:1008302208269
2.
Gajan
,
S.
,
Raychowdhury
,
P.
,
Hutchinson
,
T.
,
Kutter
,
B. L.
, and
Stewart
,
J. P.
,
2010
, “
Application and Validation of Practical Tools for Nonlinear Soil-Foundation Interaction Analysis
,”
Earthq. Spectra
,
26
(
1
), pp.
111
129
.10.1193/1.3263242
3.
Pioletti
,
D. P.
, and
Rakotomanana
,
L. R.
,
2000
, “
Non-Linear Viscoelastic Laws for Soft Biological Tissues
,”
Eur. J. Mech. Solids
,
19
(
5
), pp.
749
759
.10.1016/S0997-7538(00)00202-3
4.
Dutta
,
S. C.
, and
Roy
,
R.
,
2002
, “
A Critical Review on Idealization and Modeling for Interaction Among Soil-Foundation-Structure System
,”
Comput. Struct.
,
80
(
20–21
), pp.
1579
1594
.10.1016/S0045-7949(02)00115-3
5.
Hetenyi
,
M.
,
1946
,
Beams on Elastic Foundation
,
University of Michigan Press
,
Ann Arbor, MI
.
6.
Ruge
,
P.
, and
Birk
,
C.
,
2007
, “
A Comparison of Infinite Timoshenko and Euler-Bernoulli Beam Models on Winkler Foundation in the Frequency- and Time-Domain
,”
J. Sound Vib.
,
304
(
3–5
), pp.
932
947
.10.1016/j.jsv.2007.04.001
7.
Tsai
,
N. C.
, and
Westmann
,
R. E.
,
1967
, “
Beams on Tensionless Foundation
,”
J. Eng. Mech.
,
93
(
1
), pp.
1
12
.
8.
Weitsman
,
Y.
,
1970
, “
On Foundations That React in Compression Only
,”
ASME J. Appl. Mech.
,
37
(
7
), pp.
1019
1030
.10.1115/1.3408653
9.
Weitsman
,
Y.
,
1971
, “
Onset of Separation Between a Beam and a Tensionless Foundation Under Moving Load
,”
Int. J. Mech. Sci.
,
13
(
8
), pp.
707
711
.10.1016/0020-7403(71)90070-1
10.
Kargarnovin
,
M.
,
Younesian
,
D.
,
Thompson
,
D.
, and
Jones
,
C.
,
2005
, “
Response of Beams on Nonlinear Viscoelastic Foundations to Harmonic Moving Loads
,”
Comput. Struct.
,
83
(
23–24
), pp.
1865
1877
.10.1016/j.compstruc.2005.03.003
11.
Younesian
,
D.
,
Kargarnovin
,
M.
,
Thompson
,
D.
, and
Jones
,
C.
,
2006
, “
Parametrically Excited Vibration of a Timoshenko Beam on Random Viscoelastic Foundation Subjected to a Harmonic Moving Load
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
75
93
.10.1007/s11071-006-1460-4
12.
Choros
,
J.
, and
Adams
,
G. G.
,
1979
, “
A Steadily Moving Load on Elastic Beam on a Tensionless Winkler Foundation
,”
ASME J. Appl. Mech.
,
46
(
1
), pp.
175
180
.10.1115/1.3424492
13.
Ansari
,
M.
,
Esmailzadeh
,
E.
, and
Younesian
,
D.
,
2010
, “
Internal-External Resonance of Beams on Nonlinear Viscoelastic Foundation Traversed by Moving Load
,”
Nonlinear Dyn.
,
61
(
1–2
), pp.
163
182
.10.1007/s11071-009-9639-0
14.
Sapountzakis
,
E. J.
, and
Kampitsis
,
A. E.
,
2011
, “
Nonlinear Analysis of Shear Deformable Beams on Tensionless Nonlinear Viscoelastic Foundation Under Moving Loads
,”
J. Sound Vib.
,
330
(
22
), pp.
5410
5426
.10.1016/j.jsv.2011.06.009
15.
Mamandi
,
A.
,
Kargarnovin
,
M. H.
, and
Farsi
,
S.
,
2012
, “
Dynamic Analysis of a Simply Supported Beam Resting on a Nonlinear Elastic Foundation Under Compressive Axial Load Using Nonlinear Normal Modes Techniques Under Three-to-One Internal Resonance Condition
,”
Nonlinear Dyn.
,
70
(
2
), pp.
1147
1172
.10.1007/s11071-012-0520-1
16.
Lenci
,
S.
, and
Tarantino
,
A. M.
,
1996
, “
Chaotic Dynamics of an Elastic Beam Resting on a Winkler-Type Soil
,”
Chaos, Solitons, Fract.
,
7
(
10
), pp.
1601
1614
.10.1016/S0960-0779(96)00030-6
17.
Younesian
,
D.
,
Marjani
,
S.
, and
Esmailzadeh
,
E.
,
2013
, “
Nonlinear Vibration Analysis of Harmonically Excited Cracked Beams on Viscoelastic Foundations
,”
Nonlinear Dyn.
,
71
(
1–2
), pp.
109
120
.10.1007/s11071-012-0644-3
18.
Santee
,
D.
, and
Gonzalves
,
P.
,
2006
, “
Oscillations of a Beam on a Non-Linear Elastic Foundation
,”
Shock Vibr.
,
13
(
4–5
), pp.
273
284
.10.1155/2006/534593
19.
Zhang
,
Y.
, and
Murphy
,
K. D.
,
2004
, “
Response of a Finite Beam in Contact With a Tensionless Foundation Under Symmetric and Asymmetric Loading
,”
Int. J. Solids Struct.
,
41
(
24–25
), pp.
6745
6758
.10.1016/j.ijsolstr.2004.05.028
20.
Coskun
,
I.
, and
Engin
,
H.
,
1999
, “
Non-Linear Vibrations of a Beam on an Elastic Foundation
,”
J. Sound Vib.
,
223
(
3
), pp.
335
354
.10.1006/jsvi.1998.1973
21.
Celep
,
Z.
,
Malaika
,
A.
, and
Hussien
,
M. A.
,
1989
, “
Forced Vibrations of a Beam on a Tensionless Elastic Foundation
,”
J. Sound Vib.
,
128
(
2
), pp.
235
246
.10.1016/0022-460X(89)90768-2
22.
Raju
,
K. K.
, and
Rao
,
G. V.
,
1993
, “
Effect of a Nonlinear Elastic Foundation on the Mode Shapes in Stability and Vibration Problems of Uniform Columns/Beams
,”
J. Sound Vib.
,
16
(
2
), pp.
369
371
.10.1006/jsvi.1993.1031
23.
Silveira
,
R. A. M.
,
Pereira
,
W. L. A.
, and
Gonzalves
,
P. B.
,
2008
, “
Nonlinear Analysis of Structural Elements Under Unilateral Contact Constraints by a Ritz Type Approach
,”
Int. J. Solids Struct.
,
45
(
9
), pp.
2629
2650
.10.1016/j.ijsolstr.2007.12.012
24.
Lancioni
,
G.
, and
Lenci
,
S.
,
2007
, “
Forced Nonlinear Oscillations of a Semi-Infinite Beam Resting on a Unilateral Elastic Soil: Analytical and Numerical Solutions
,”
J. Comput. Nonlinear Dyn.
,
2
(
2
), pp.
155
166
.10.1115/1.2447406
25.
Lancioni
,
G.
, and
Lenci
,
S.
,
2010
, “
Dynamics of a Semi-Infinite Beam on Unilateral Springs: Touch-Down Points Motion and Detached Bubbles Propagation
,”
Int. J. Non-Linear Mech.
,
45
(
9
), pp.
876
887
.10.1016/j.ijnonlinmec.2009.11.015
26.
Bhattiprolu
,
U.
,
Bajaj
,
A. K.
, and
Davies
,
P.
,
2013
, “
An Efficient Solution Methodology to Study the Response of a Beam on Viscoelastic and Nonlinear Unilateral Foundation: Static Response
,”
Int. J. Solids Struct.
,
50
(
14–15
), pp.
2328
2339
.10.1016/j.ijsolstr.2013.03.014
You do not currently have access to this content.