The scattering of acoustic waves by a chain of elastic spheres in liquid is studied. The incident wave, the scattering wave in the host, and the transmitted waves (including longitudinal and transverse wave modes) in the elastic spheres are all expanded in the form of a series of spherical wave functions. The total waves are obtained by the addition of all scattered waves from individual elastic sphere. The addition theorem of spherical wave function is used to perform the coordinates transform for the scattering waves from different spheres. The expansion coefficients of scattering waves are determined by the interface condition between the elastic spheres and the liquid host. The scattering cross section and the scattering amplitude in far field are computed as numerical examples. Two cases, steel spheres and lead spheres embedded in water, are considered in the numerical examples.

References

References
1.
Wolf
,
A.
,
1945
, “
Motion of a Rigid Sphere in an Acoustic Wave Field
,”
J. Geophys.
,
10
, pp.
91
109
.10.1190/1.1437153
2.
Nagase
,
M.
,
1957
, “
Diffraction of Elastic Wave by a Spherical Surface
,”
J. Phys. Soc. Jpn.
,
11
, pp.
279
301
.10.1143/JPSJ.11.279
3.
Knopoff
,
L.
,
1959
, “
Scattering of Compressional Waves by Spherical Obstacles
,”
J. Geophys.
,
24
, pp.
30
39
.10.1190/1.1438562
4.
Ying
,
C. F.
, and
Truell
,
R.
,
1956
, “
Scattering of Plane Longitudinal Wave by Sphercal Obstacle in an Isotropically Elastic Solid
,”
J. Appl. Phys.
,
27
, pp.
1086
1097
.10.1063/1.1722545
5.
Einspruch
,
N. G.
,
Witterholt
,
E. J.
, and
Truell
,
R.
,
1960
, “
Scattering of a Plane Transverse Wave by a Sphere Obstacle in an Elastic Medium
,”
J. Appl. Phys.
,
31
, pp.
806
818
.10.1063/1.1735701
6.
Burning
,
J.
, and
Lo
,
Y. T.
,
1969
, “
Multiple Scattering by Spheres
,”
Antenna Laboratory, University of Illinois, Urbana
, IL, Technical Report No. 69-5.
7.
Burning
,
J.
, and
Lo
,
Y. T.
,
1971
, “Multiple Scattering of EM Waves by Spheres Part I—Multipole Expansion and Ray-Optical Solutions,”
IEEE Trans. Antennas Propag.
19
(
3
), pp.
378
390
.10.1109/TAP.1971.1139944
8.
Burning
,
J.
, and
Lo
,
Y. T.
,
1971
, “Multiple Scattering of EM Waves by Spheres Part II—Numerical and Experimental Results,”
IEEE Trans. Antennas Propag.
19
(
3
), pp.
391
400
.10.1109/TAP.1971.1139925
9.
Ivanov
,
E.
,
1970
, “
Diffraction of Electromagnetic Waves by Two Bodies, Nauka i Tekbnika
, Minsk, 1968, NASA Technical Translation F-597.
10.
Peterson
,
B.
, and
Ström
,
S.
,
1974
, “
Matrix Formulation of Acoustic Scattering From an Arbitrary Number of Scatterers
,”
J. Acoust. Soc. Am.
,
56
(
3
), pp.
771
778
.10.1121/1.1903325
11.
Peterson
,
B.
, and
Ström
,
S.
,
1975
, “
Matrix Formulation of Acoustic Scattering From Multilayered Scatterers
,”
J. Acoust. Soc. Am.
,
57
(
1
), pp.
2
13
.10.1121/1.380397
12.
Gaunaurd
,
G. C.
,
Huang
,
H.
, and
Strifors
,
H. C.
,
1995
, “
Acoustic Scattering by a Pair of Spheres
,”
J. Acoust. Soc. Am.
,
98
(
1
), pp.
494
507
.10.1121/1.414447
13.
Gaunaurd
,
G. C.
,
Huang
,
H.
, and
Strifors
,
H. C.
,
1997
, “
Acoustic Scattering by a Pair of Spheres: Addenda and Corrigenda
,”
J. Acoust. Soc. Am.
,
107
(
5
), pp.
2983
2985
.10.1121/1.418526
14.
Gaunaurd
,
G. C.
, and
Huang
,
H.
,
1996
, “
Sound Scattering by a Spherical Object Near a Hard Flat Bottom
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
43
(
4
), pp.
690
700
.10.1109/58.503731
15.
Gaunaurd
,
G. C.
, and
Huang
,
H.
,
1995
, “
Acoustic Scattering of a Plane Wave by Two Spherical Elastic Shells
,”
J. Acoust. Soc. Am.
,
98
(
4
), pp.
2149
2156
.10.1121/1.414447
16.
Gaunaurd
,
G. C.
, and
Huang
,
H.
,
1997
, “
Scattering of a Plane Acoustic Wave by a Spherical Elastic Shell Near a Free Surface
,”
J. Solids Struct.
,
34
(
5
), pp.
591
602
.10.1016/S0020-7683(96)00033-9
17.
Huang
,
H.
, and
Gaunaurd
,
G. C.
,
1997
, “
Acoustic Scattering of a Plane Wave by Two Spherical Elastic Shells Above the Coincidence Frequency
,”
J. Acoust. Soc. Am.
,
101
(
5
), pp.
2659
2668
.10.1121/1.418507
18.
Gumerov
,
N. A.
, and
Duraiswami
,
R.
,
2002
, “
Computation of Scattering From N Spheres Using Multipole Reexpansion
,”
J. Acoust. Soc. Am.
,
112
(
6
), pp.
2688
2701
.10.1121/1.1517253
19.
Fang
,
X. Q.
,
Hu
,
C.
, and
Huang
,
W. H.
,
2007
, “
Scattering of Elastic Waves and Dynamic Stress in Two-Particle Reinforced Composite System
,”
Mech. Mater.
,
39
, pp.
538
547
.10.1016/j.mechmat.2006.08.007
20.
Xu
,
Y. L.
,
1998
,“
Efficient Evaluation of Vector Translation Coefficients in Multi-Particle Light-Scattering Theories,
J. Comput. Phys.
,
139
, pp.
137
165
.10.1006/jcph.1997.5867
21.
Gumerov
,
N. A.
, and
Duraiswami
,
R.
,
2007
, “
A Scalar Potential Formulation and Translation Theory for the Time-Harmonic Maxwell Equations
,”
J. Comput. Phys.
,
225
(
1
), pp.
206
236
.10.1016/j.jcp.2006.11.025
22.
Kerr
,
F. H.
,
1992
, “
The Scattering of a Plane Elastic Wave by Spherical Inclusion
,”
Int. J. Eng. Sci.
,
30
(
2
), pp.
169
186
.10.1016/0020-7225(92)90050-Q
23.
Xu
,
Y. L.
,
1996
, “
Calculation of the Addition Coefficients in Electromagnetic Multisphere- Scattering Theory
,”
J. Comput. Phys.
,
127
, pp.
285
298
.10.1006/jcph.1996.0175
You do not currently have access to this content.