Many industries make wide use of rotor bearing systems such as high speed turbines and generators. However, the vibration of antifriction rotor–bearings is a key factor in reducing the life of the bearings; thus significantly influencing the performance and working life of the whole power plant. In earlier research on the vibration characteristics of high speed rotor–bearing systems, such as in induced draft (ID) fans, an application used in sugar cane factories, the supporting antifriction bearings were simplified as a particle on a shaft with radial stiffness and damping coefficient. However, such simplification neglects the effects of the bearing structure on the vibration performance of the rotor–bearing system. This paper demonstrates the benefits of a more holistic approach and establishes a numerical model of the stiffness of the spherical roller bearing through Buckingham's π theorem (BPT). On the basis of this model, we argue for the benefits of a new dimensional analysis (DA) technique for rotor–bearing systems. Our new DA also considers the influences of the bearing structure parameters on the vibration of rotor–bearing systems. We demonstrate the effectiveness of our approach by conducting a comparative BPT study using an ID fan, a rotor–bearing system in use in sugar cane factories. We first analyzed an ID fan using the simplified model to obtain the defect frequencies and vibration amplitude responses of the ID fan system. Subsequently the same ID fan rotor was also analyzed using our new multivariable regression analysis (MVRA) approach to verify the validity of our new and holistic BPT. The results indicate that the new method we propose in this paper for the calculation of vibration characteristics of a high speed rotor–bearing (ID fan) is credible and will save time and costs by the accurate detection of imminent bearing failure.

References

References
1.
Patel
, V
. N.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2010
, “
A Dynamic Model for Vibration Studies of Deep Groove Ball Bearings Considering Single and Multiple Defects in Races
,”
ASME J. Tribol.
,
132
, p.
041101
.10.1115/1.4002333
2.
Harsha
,
S. P.
, and
Kankar
,
P. K.
,
2004
, “
Stability Analysis of a Rotor Bearing System Due to Surface Waviness and Number of Balls
,”
Int. J. Mech. Sci.
,
46
, pp.
1057
1081
.10.1016/j.ijmecsci.2004.07.007
3.
Bachschmid
,
N.
,
Pennacchi
,
P.
, and
Vania
,
A.
,
2002
, “
Identification of Multiple Faults in Rotor Systems
,”
J. Sound Vib.
,
254
(
2
), pp.
327
366
.10.1006/jsvi.2001.4116
4.
Rahnejat
,
H.
, and
Gohar
,
R.
,
1985
, “
The Vibrations of Radial Ball Bearings
,”
Proc. Inst. Mech. Eng. Part C
,
199
(
C3
), pp.
181
193
.10.1243/PIME_PROC_1985_199_113_02
5.
Choy
,
F. K.
,
Zhou
,
J.
,
Braun
,
M. J.
, and
Wang
,
L.
,
2005
, “
Vibration Monitoring and Damage Quantification of Faulty Ball Bearings
,”
ASME J. Tribol.
,
127
, pp.
776
783
.10.1115/1.2033899
6.
Tomovic
,
R.
,
Miltenovic
,
V.
,
Banic
,
M.
, and
Miltenovic
,
A.
,
2010
, “
Vibration Response of Rigid Rotor in Unloaded Rolling Element Bearing
,”
Int. J. Mech. Sci.
,
52
, pp.
1176
1185
.10.1016/j.ijmecsci.2010.05.003
7.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Desai
S.
,
2010
, “
A Theoretical Model to Predict the Effect of Localized Defect on Vibrations Associated With Ball Bearings
,”
Int. J. Mech. Sci.
,
52
, pp.
1193
1201
.10.1016/j.ijmecsci.2010.05.005
8.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of Ball Bearings Using Machine Learning Methods
,”
Expert Syst. Appl.
,
38
(3), pp.
1876
1886
.10.1016/j.eswa.2010.07.119
9.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
Model for the Vibration Produced by a Single Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
,
96
(
1
), pp.
69
82
.10.1016/0022-460X(84)90595-9
10.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1985
, “
Model for the Vibration Produced by a Multiple Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
,
98
(
2
), pp.
263
273
.10.1016/0022-460X(85)90390-6
11.
Tandan
,
N.
,
Yadava
,
G. S.
, and
Ramakrishna
,
K. M.
,
2007
, “
A Comparison of Some Condition Monitoring Techniques for the Detection of Defect in Induction Motor Ball Bearing
,”
Mech. Syst. Signal Process.
,
21
, pp.
244
256
.10.1016/j.ymssp.2005.08.005
12.
Tandan
,
N.
, and
Choudhury
,
A.
,
1999
, “
A Review of the Vibration and Acoustic Measurement Methods for Detection of Defects in Rolling Element Bearings
,”
Tribol. Int.
,
32
(
8
), pp.
469
480
.10.1016/S0301-679X(99)00077-8
13.
Zeki
,
K.
, and
Karagulle
,
H.
,
2006
, “
Vibration Analysis of Rolling Element Bearing With Various Defects Under the Action of an Unbalanced Force
,”
Mech. Syst. Signal Process.
,
20
, pp.
1967
1991
.10.1016/j.ymssp.2005.05.001
14.
Arslan
,
H.
, and
Akturk
,
N.
,
2008
, “
An Investigation of Rolling Element Vibrations Caused by Local Defects
,”
ASME J. Tribol.
,
130
(4), p.
041101
.10.1115/1.2958070
15.
Harris
,
T. A.
,
2001
,
Rolling Bearing Analysis
,
4th ed.
,
Wiley-Interscience
,
New York
.
16.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2013
, “
Antifriction Bearings Damage Analysis Using Experimental Data Based Models
,”
ASME J. Tribol.
,
135
(
4
), p.
041105
.10.1115/1.4024638
17.
Upadhyay
,
S. H.
,
Harsha
,
S. P.
, and
Jain
,
S. C.
,
2008
, “
Nonlinear Vibration Signature Analysis of High Speed Rotor Due to Defects of Rolling Element
,”
Adv. Theor. Appl. Mech.
,
1
(
7
), pp.
301
314
.
18.
Montgomery
,
D. C.
,
2007
,
Design and Analysis of Experiments
,
5th ed.
,
Wiley
,
Singapore
, pp.
21
46
.
19.
Czeslaw
,
T.
, and
Kowalski
,
T. K.
,
2003
, “
Neural Networks Application for Induction Motor Faults Diagnosis
,”
Math. Comput. Simul.
,
63
, pp.
435
448
.10.1016/S0378-4754(03)00087-9
20.
Hoffman
,
A. J.
, and
Merwe
,
N. T.
,
2002
, “
The Application of Neural Networks to Vibrational Diagnostics for Multiple Fault Conditions
,”
Comput. Stand. Interfaces
,
24
, pp.
139
149
.10.1016/S0920-5489(02)00014-4
21.
Langhaar
,
H. L.
,
1951
,
Dimensional Analysis and Theory of Models
,
John Wiley
,
London
, pp.
13
42
.
22.
Adams
,
M. L.
,
2010
,
Rotating Machinery Vibration: From Analysis to Troubleshooting
,
2nd ed.
,
CRC Press
,
Boca Raton, FL
.
23.
Rao
,
J. S.
,
2000
,
Vibratory Condition Monitoring of Machines
,
Narosa Publishing House
,
New Delhi
, pp.
132
184
.
You do not currently have access to this content.