In this paper, we employ the nondimensional dynamic influence function (NDIF) method to solve the free vibration problem of an elliptical membrane. It is found that the spurious eigensolutions appear in the Dirichlet problem by using the double-layer potential approach. Besides, the spurious eigensolutions also occur in the Neumann problem if the single-layer potential approach is utilized. Owing to the appearance of spurious eigensolutions accompanied with true eigensolutions, singular value decomposition (SVD) updating techniques are employed to extract out true and spurious eigenvalues. Since the circulant property in the discrete system is broken, the analytical prediction for the spurious solution is achieved by using the indirect boundary integral formulation. To analytically study the eigenproblems containing the elliptical boundaries, the fundamental solution is expanded into a degenerate kernel by using the elliptical coordinates and the unknown coefficients are expanded by using the eigenfunction expansion. True and spurious eigenvalues are simultaneously found to be the zeros of the modified Mathieu functions of the first kind for the Dirichlet problem when using the single-layer potential formulation, while both true and spurious eigenvalues appear to be the zeros of the derivative of modified Mathieu function for the Neumann problem by using the double-layer potential formulation. By choosing only the imaginary-part kernel in the indirect boundary integral equation method (BIEM) to solve the eigenproblem of an elliptical membrane, spurious eigensolutions also appear at the same position with those of NDIF since boundary distribution can be lumped. The NDIF method can be seen as a special case of the indirect BIEM by lumping the boundary distribution. Both the analytical study and the numerical experiments match well with the same true and spurious solutions.

## References

References
1.
De Mey
,
G.
,
1977
, “
Simplified Integral Equation Method for the Calculation of the Eigenvalues of Helmholtz Equation
,”
Int. J. Numer. Meth. Eng.
,
11
, pp.
1340
1343
.10.1002/nme.1620110813
2.
Mattioli
,
F.
,
1980
, “
Numerical Instabilities of the Integral Approach to the Interior Boundary-Value Problem for the Two-Dimensional Helmholtz Equation
,”
Int. J. Numer. Meth. Eng.
,
15
, pp.
1303
1313
.10.1002/nme.1620150903
3.
Beskos
,
D. E.
,
1997
, “
Boundary Element Methods in Dynamic Analysis: Part II (1986–1996)
,”
Appl. Mech. Rev.
,
50
(
3
), pp.
149
197
.10.1115/1.3101695
4.
Reutskiy
,
S. Y.
,
2006
, “
The Method of Fundamental Solution for Helmholtz Eigenvalue Problems in Simply and Multiply Connected Domains
,”
Eng. Anal. Bound. Elem.
,
30
, pp.
150
159
.10.1016/j.enganabound.2005.08.011
5.
Kang
,
S. W.
,
Lee
,
J. M.
, and
Kang
,
Y. J.
,
1999
, “
Vibration Analysis of Arbitrarily Shaped Membranes Using Non-Dimensional Dynamic Influence Function
,”
J. Sound Vib.
,
221
(
1
), pp.
117
132
.10.1006/jsvi.1998.2009
6.
Kang
,
S. W.
, and
Lee
,
J. M.
,
2000
, “
Authors Reply to the Comments on ‘Vibration Analysis of Arbitrary Shaped Membranes Using Non-Dimensional Dynamic Influence Function'
,”
J. Sound Vib.
,
235
, pp.
170
171
.10.1006/jsvi.2000.3145
7.
Kang
,
S. W.
, and
Lee
,
J. M.
,
2001
, “
Application of Free Vibration Analysis of Membranes Using the Non-Dimensional Dynamic Influence Function
,”
J. Sound Vib.
,
234
(
1
), pp.
455
470
.10.1006/jsvi.1999.2872
8.
Kang
,
S. W.
, and
Lee
,
J. M.
,
2000
, “
Eigenmode Analysis of Arbitrarily Shaped Two-Dimensional Cavities by the Method of Point Matching
,”
J. Acoust. Soc. Am.
,
107
(
3
), pp.
1153
1160
.10.1121/1.428456
9.
Kang
,
S. W.
, and
Lee
,
J. M.
,
2001
Free Vibration Analysis of Arbitrarily Shaped Plates With Clamped Edges Using Wave-Type Functions
,”
J. Sound Vib.
,
242
(
1
), pp.
9
26
.10.1006/jsvi.2000.3347
10.
Kang
,
S. W.
, and
Lee
,
J. M.
,
2008
, “
Free Vibration Analysis of Arbitrarily Shaped Plates With Smoothly Varying Free Edges Using NDIF Method
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041010
.10.1115/1.2730531
11.
Kang
,
S. W.
, and
Atluri
,
S. N.
,
2009
, “
Free Vibration Analysis of Arbitrarily Shaped Polygonal Plates With Simply Supported Edges Using a Sub-Domain Method
,”
J. Sound Vib.
,
327
, pp.
271
284
.10.1016/j.jsv.2009.07.017
12.
Chen
,
J. T.
,
Chang
,
M. H.
,
Chung
, I
. L.
, and
Cheng
,
Y. C.
,
2002
, “
Comments on ‘Eigenmode Analysis of Arbitrarily Shaped Two-Dimensional Cavities by the Method of Point Matching
’,”
J. Acoust. Soc. Am.
,
111
(
1
), pp.
33
36
.10.1121/1.1410966
13.
Chen
,
J. T.
,
Kuo
,
S. R.
,
Chen
,
K. H.
, and
Cheng
,
Y. C.
,
2000
, “
Comments on ‘Vibration Analysis of Arbitrarily Shaped Membranes Using Non-Dimensional Dynamic Influence Function’
,”
J. Sound Vib.
,
235
(
1
), pp.
156
171
.10.1006/jsvi.1999.2870
14.
Chen
,
W.
,
Shi
,
J.
, and
Chen
,
L.
,
2009
, “
Investigation on the Spurious Eigenvalues of Vibration Plates by Non-Dimensional Dynamic Influence Function Method
,”
Eng. Anal. Bound. Elem.
,
33
, pp.
885
889
.10.1016/j.enganabound.2009.01.008
15.
Chen
,
J. T.
,
Lee
,
J. W.
, and
Leu
,
S. Y.
,
2011
, “
Analytical Investigation for Spurious Eigensolutions of Multiply-Connected Membranes Containing Elliptical Boundaries Using the Dual BIEM
,”
Int. J. Solids Struct.
,
48
, pp.
729
744
.10.1016/j.ijsolstr.2010.11.008
16.
Zhang
,
S.
, and
Jin
,
J.
1996
,
Computation of Special Functions
,
John Wiley & Sons
,
New York
.
17.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1965
,
Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables
,
Dover
,
New York
.
18.
Morse
,
P.
, and
Feshbach
,
H.
,
1953
,
Method of Theoretical Physics
,
McGraw-Hill
,
New York
.
19.
Davis
,
H. T.
, and
Thomson
,
K. T.
,
2000
,
Linear Algebra and Linear Operators in Engineering
,
,
San Diego
, CA.
20.
Berry
,
M. W.
,
Dumais
,
S. T.
, and
O'Brien
,
G. W.
,
1995
, “
The Computational Complexity of Alternative Updating Approaches for an SVD-Encoded Indexing Scheme
,”
7th SIAM Conference on Parallel Processing for Scientific Computing
, San Francisco, CA, February 15–17, pp.
39
44
.