The eigenvalues and the first and second-order eigenvalue sensitivities of a uniform Euler–Bernoulli beam supported by the standard linear solid model for viscoelastic solids are studied in detail. A method is proposed that yields the approximate eigenvalues and allows the formulation of a frequency equation that can be used to obtain approximate eigenvalue sensitivities. The eigenvalue sensitivities are further exploited to solve for the perturbed eigenvalues due to system modifications, using both a first- and second-order Taylor series expansion. The proposed method is easy to formulate, systematic to apply, and simple to code. Numerical experiments consisting of various beams supported by a single or multiple viscoelastic solids validated the proposed scheme and showed that the approximate eigenvalues and their sensitivities closely track the exact results.

References

References
1.
Chiba
,
T.
, and
Kobayashi
,
H.
,
1985
, “
A Study of Modeling the Mechanical Snubber for Dynamic Analysis
,”
Transactions of the International Conference on Structural Mechanics in Reactor Technology
, Vol.
K
, North-Holland, Amsterdam, pp.
189
194
.
2.
DeJong
,
R. G.
,
Ermer
,
G. E.
,
Paydenkar
,
C. S.
, and
Remtema
,
T. M.
,
1998
, “
High Frequency Dynamic Properties of Rubber Isolation Elements
,”
Proceedings of Noise-Con'98
, Ypsilanti, MI, April 5–8, pp.
383
390
.
3.
Shekhar
,
N. C.
,
Hatwal
,
H.
, and
Mallik
,
A. K.
,
1999
, “
Performance of Non-linear Isolators and Absorbers to Shock Excitations
,”
J. Sound Vib.
,
227
(
2
), pp.
293
307
.10.1006/jsvi.1999.2346
4.
de Haan
,
Y. M.
, and
Sluimer
,
G. M.
,
2001
, “
Standard Linear Solid Model for Dynamic and Time Dependent Behaviour of Building Materials
,”
Heron
,
46
(
1
), pp.
49
76
.
5.
Zhang
,
J.
, and
Richards
,
C. M.
,
2006
, “
Dynamic Analysis and Parameter Identification of a Single Mass Elastomeric Isolation System Using a Maxwell–Voigt Model
,”
ASME J. Vibr. Acoust.
,
128
(
6
), pp.
713
721
.10.1115/1.2345676
6.
Kaul
,
S.
,
2012
, “
Dynamic Modeling and Analysis of Mechanical Snubbing
,”
ASME J. Vibr. Acoust.
,
134
(
2
), p.
021020
.10.1115/1.4005012
7.
Ikhouane
,
F.
, and
Rodellar
,
J.
,
2007
,
Systems With Hysterisis: Analysis, Identification and Control Using the Bouc-Wen Model
,
1st ed.
,
John Wiley and Sons
,
New York
.
8.
Adhikari
,
S.
, and
Pascual
,
B.
,
2009
, “
Eigenvalues of Linear Viscoelastic Systems
,”
J. Sound Vib.
,
325
(
4–5
), pp.
1000
1011
.10.1016/j.jsv.2009.04.008
9.
Adhikari
,
S.
,
2010
, “
A Reduced Second-Order Approach for Linear Viscoelastic Oscillators
,”
ASME J. Appl. Mech.
,
77
(
4
), p.
041003
.10.1115/1.4000913
10.
Adhikari
,
S.
, and
Pascual
,
B.
,
2011
, “
Iterative Methods for Eigenvalues of Viscoelastic Systems
”,
ASME J. Vibr. Acoust.
,
133
(
2
), p.
021002
.10.1115/1.4002220
11.
Lancaster
,
P.
,
1964
, “
On Eigenvalues of Matrices Dependent on a Parameter
,”
Numer. Math.
,
6
(
5
), pp.
377
387
.10.1007/BF01386087
12.
Fox
,
R. L.
, and
Kapoor
,
M. P.
,
1968
, “
Rates of Change of Eigenvalues and Eigenvectors
,”
AIAA J.
,
6
(
12
), pp.
2426
2429
.10.2514/3.5008
13.
Plaut
,
R. H.
, and
Huseyin
,
K.
,
1973
, “
Derivatives of Eigenvalues and Eigenvectors in Non-Self-Adjoint Systems
,”
AIAA J.
,
11
(
2
), pp.
250
251
.10.2514/3.6740
14.
Rudisill
,
C. S.
, and
Chu
,
Y. Y.
,
1975
, “
Numerical Methods for Evaluating the Derivatives of Eigenvalues and Eigenvectors
,”
AIAA J.
,
13
(
6
), pp.
834
837
.10.2514/3.60449
15.
Adelman
,
H. M.
, and
Haftka
,
R. T.
,
1986
, “
Sensitivity Analysis for Discrete Structural Systems
,”
AIAA J.
,
24
(
5
), pp.
823
832
.10.2514/3.48671
16.
Godoy
,
L.
Taroco
,
E.
, and
Feijoo
,
R.
,
1994
, “
Second-Order Sensitivity Analysis in Vibration and Buckling Problems
,”
Int. J. Numer. Methods Eng.
,
37
(
23
), pp.
3999
4014
.10.1002/nme.1620372305
17.
Gürgöze
,
M.
,
Özgür
,
K.
, and
Erol
,
H.
,
1995
, “
On the Eigenfrequencies of a Cantilevered Beam With a Tip Mass and In-Span Support
,”
Comput. Struct.
,
56
(
1
), pp.
85
92
.10.1016/0045-7949(94)00541-A
18.
Gürgöze
,
M.
,
1998
, “
On the Sensitivities of the Eigenvalues of a Viscously Damped Cantilever Carrying a Tip Mass
,”
J. Sound Vib.
,
216
(
2
), pp.
215
225
.10.1006/jsvi.1998.1586
19.
Vessel
,
K. N.
,
Ram
,
Y. M.
, and
Pang
,
S.
,
2005
, “
Sensitivity of Repeated Eigenvalues to Perturbations
,”
AIAA J.
,
43
(
3
), pp.
582
585
.10.2514/1.9003
20.
Lee
,
T. H.
,
2007
, “
Adjoint Method for Design Sensitivity Analysis of Multiple Eigenvalues and Associated Eigenvectors
,”
AIAA J.
,
45
(
8
), pp.
1998
2004
.10.2514/1.25347
21.
Griffith
,
D. T.
, and
Miller
,
A. K.
,
2009
, “
Applications of Analytical Sensitivities of Principal Components in Structural Dynamics Analysis
,”
50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Palm Springs, CA, May 4–7.
22.
Cha
,
P. D.
, and
Sabater
,
A. B.
,
2011
, “
Eigenvalue Sensitivities of a Linear Structure Carrying Lumped Attachments
,”
AIAA J.
,
49
(
11
), pp.
2470
2481
.10.2514/1.J050808
23.
Meidav
,
T.
,
1964
, “
Viscoelastic Properties of the Standard Linear Solid
,”
Geophys. Prospect.
,
121
, pp.
80
99
.10.1111/j.1365-2478.1964.tb01891.x
24.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
,
McGraw-Hill
,
New York
.
25.
Sherman
,
J.
, and
Morrison
,
W. J.
,
1949
, “
Adjustment of an Inverse Matrix Corresponding to Changes in the Elements of a Given Column or a Given Row of the Original Matrix
,”
Ann. Math. Stat.
,
20
, pp.
621
.
26.
Golub
,
G. H.
, and
van Loan
,
C. F.
,
1996
,
Matrix Computations
,
Johns Hopkins University
,
Baltimore
.
27.
Marsden
,
J. E.
, and
Tromba
,
A. J.
,
1988
,
Vector Calculus
,
W. H. Freeman
,
New York
.
28.
Gonçalves
,
P. J. P.
,
Brennan
,
M. J.
, and
Elliott
,
S. J.
,
2007
, “
Numerical Evaluation of High-Order Modes of Vibration in Uniform Euler-Bernoulli Beams
,”
J. Sound Vib.
,
301
(
3–5
), pp.
1035
1039
.10.1016/j.jsv.2006.10.012
29.
Reddy
,
J. N.
,
1993
,
An Introduction to the Finite Element Method
,
McGraw-Hill
,
New York
.
30.
Edwards
,
C. H.
, and
Penney
,
D. E.
,
2002
,
Multivariable Calculus With Matrices
,
Prentice-Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.