In this manuscript, acoustic wave propagation in a novel three-dimensional porous phononic crystal-Kagome lattice, is studied by using finite element method. Firstly, a Kagome-sphere structure is established based on Kagome truss. For lattice with fixed rods (sphere radius varied) or fixed spheres (rod radius varied), the band structures are calculated in order to clarify the influence of geometrical parameters (sphere and rod sizes) on the bandgap characteristics in Kagome-sphere lattice. The vibration modes at the band edges of the lowest bandgaps are investigated with the aim to understand the mechanism of the bandgap generation. It is found that the emergence of the bandgap is due to the local resonant vibration of the unit cell at the adjacent bands. The width and position of this bandgap can be tuned by adjusting the geometrical parameters. An equivalent mass-spring model is proposed and the equivalent system resonance frequency can be evaluated which predicts well the upper and lower edges of the complete bandgaps. Moreover, the critical geometrical parameter is formulated which gives the critical geometrical condition for the opening of the complete bandgaps. The results in this paper are relevant to the bandgap structure design of three-dimensional porous phononic crystals (PPCs).

References

References
1.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
, pp.
2022
2025
.10.1103/PhysRevLett.71.2022
2.
Liu
,
Z. Y.
,
Zhang
,
X. X.
,
Mao
,
Y. W.
,
Zhu
,
Y. Y.
,
Yang
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
, pp.
1734
1736
.10.1126/science.289.5485.1734
3.
Fang
,
N.
,
Xi
,
D.
,
Xu
,
J.
,
Ambati
,
M.
,
Srituravanich
,
W.
,
Sun
,
C.
, and
Zhang
,
X.
,
2006
, “
Ultrasonic Metamaterials With Negative Modulus
,”
Nature Mater.
,
5
, pp.
452
456
.10.1038/nmat1644
4.
Huang
,
G. L.
, and
Sun
,
C. T.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust.
,
132
, p.
031003
.10.1115/1.4000784
5.
Li
,
J. B.
,
Wang
,
Y. S.
, and
Zhang
,
C. Z.
,
2013
, “
Tuning of Acoustic Bandgaps in Phononic Crystals With Helmholtz Resonators
,”
ASME J. Vib. Acoust.
,
135
, p.
031015
.10.1115/1.4023812
6.
Fang
,
D. N.
,
Zhang
,
Y. H.
, and
Cui
,
X. D.
,
2009
,
Mechanical and Multi-Functional Design of Light Lattice Structures
,
Science Press
,
Beijing
.
7.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
2nd ed.
,
Cambridge University Press
,
Cambridge
, UK.
8.
Gibson
,
L. J.
,
2002
, “Mechanical Behavior of Metallic Foams,”
Annual. Rev. Mater. Sci.
,
30
, pp.
191
227
.10.1146/annurev.matsci.30.1.191
9.
Martinsson
,
P. G.
, and
Movchan
,
A. B.
,
2003
, “
Vibration of Lattice Structures and Phononic Band Gaps
,”
Q. J. Mech. Appl. Math.
,
56
, pp.
45
64
.10.1093/qjmam/56.1.45
10.
Phani
,
A. S.
,
Woodhouse
,
J.
, and
Fleck
,
N. A.
,
2006
, “
Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Acoust. Soc. Am.
,
119
, pp.
1995
2005
.10.1121/1.2179748
11.
Spadoni
,
A.
,
Ruzzene
,
M.
, and
Scarpa
F.
,
2009
, “
Phononic Properties of Hexagonal Chiral Lattices
,”
Wave Motion
,
46
, pp.
435
450
.10.1016/j.wavemoti.2009.04.002
12.
Liu
,
Y.
,
Su
,
J. Y.
, and
Gao
,
L. T.
,
2008
, “
The Influence of the Micro-Topology on the Phononic Band Gaps in 2D Porous Phononic Crystals
,”
Phys. Lett. A
,
372
, pp.
6784
6789
.10.1016/j.physleta.2008.09.051
13.
Liu
,
Y.
,
Su
,
J. Y.
,
Xu
,
Y. L.
, and
Zhang
,
X. C.
,
2009
, “
The Influence of Pore Shapes on the Band Structures in Phononic Crystals With Periodic Distributed Void Pores
,”
Ultrasonics
,
49
, pp.
276
280
.10.1016/j.ultras.2008.09.008
14.
Wang
,
Y. F.
,
Wang
,
Y. S.
, and
Su
,
X. X.
,
2011
, “
Large Bandgaps of Two-Dimensional Phononic Crystals With Cross-Like Holes
,”
J. Appl. Phys.
,
110
, p.
113520
.10.1063/1.3665205
15.
Huang
,
Z. G.
, and
Chen
,
Z. Y.
,
2011
, “
Acoustic Waves in Two-Dimensional Phononic Crystals With Reticular Geometric Structures
,”
ASME J. Vib. Acoust.
,
133
, p.
031011
.10.1115/1.4003201
16.
Yan
,
Z. Z.
, and
Zhang
,
C. Z.
,
2012
, “
Band Structures and Localization Properties of Aperiodic Layered Phononic Crystals
,”
Ultrasonics
,
52
, pp.
598
604
.10.1016/j.ultras.2011.12.005
17.
Liu
,
Y.
,
Sun
,
X. Z.
, and
Chen
,
S. T.
,
2013
, “
Band Gap Structures in Two-Dimensional Super Porous Phononic Crystals
,”
Ultrasonics
,
53
, pp.
518
524
.10.1016/j.ultras.2012.09.006
18.
Wang
,
Y. F.
, and
Wang
,
Y. S.
,
2013
, “
Complete Bandgap in Three-Dimensional Holey Phononic Crystals With Resonators
,”
ASME J. Vib. Acoust.
,
135
, p.
041009
.10.1115/1.4023823
19.
Hutchinson
,
R. G.
,
Wicks
,
N.
,
Evans
,
A. G.
,
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
, 2003, “Kagome Plate Structures for Actuation,”
Int. J. Solids Struct.
,
40
, pp.
6969
6980
.10.1016/S0020-7683(03)00348-2
20.
Lee
,
B. K.
, and
Kang
,
K. J.
,
2009
, “
Compressive Strength of Tube-Woven Kagome Truss Cores
,”
Script. Mater.
,
60
, pp.
391
394
.10.1016/j.scriptamat.2008.11.022
21.
Park
,
J. S.
,
Joo
,
J. H.
,
Lee
,
B. C.
, and
Kang
,
K. J.
,
2011
, “
Mechanical Behaviour of Tube-Woven Kagome Truss Cores Under Compression
,”
Int. J. Mech. Sci.
,
53
, pp.
65
73
.10.1016/j.ijmecsci.2010.11.002
22.
Zhou
,
X. Z.
,
Wang
,
Y. S.
, and
Zhang
,
Ch.
,
2010
, “
Three-Dimensional Sonic Band Gaps Tuned by Material Parameters
,”
Appl. Mech. Mater.
,
29–32
, pp.
1797
1802
.10.4028/www.scientific.net/AMM.29-32.1797
You do not currently have access to this content.