In this study, aeroelastic analysis of a spherical shell subjected to external supersonic airflow is carried out. The structural model is based on a combination of the linear spherical shell theory and the classic finite element method (FEM). In this hybrid method, the nodal displacements are found from the exact solution of shell governing equations rather than approximated by polynomial functions. Therefore, the number of elements chosen is a function of the complexity of the structure. Convergence is rapid. It is not necessary to choose a large number of elements to obtain good results. Linearized first-order potential (piston) theory with the curvature correction term is coupled with the structural model to account for pressure loading. The linear mass, stiffness, and damping matrices are found using the hybrid finite element formulation. Aeroelastic equations are numerically derived and solved. The results are validated using the numerical and theoretical data available in literature. The analysis is accomplished for spherical shells with different boundary conditions, geometries, flow parameters, and radius to thickness ratios. the results show that the spherical shell loses its stability through coupled-mode flutter. This proposed hybrid FEM can be used efficiently for the design and analysis of spherical shells employed in high speed aircraft structures.

References

References
1.
Bismarck-Nasr
,
M. N.
,
1996
, “
Finite Elements in Aeroelasticity of Plates and Shells
,”
ASME Appl. Mech. Rev.
,
49
, pp.
S17
S24
.10.1115/1.3101970
2.
Dowell
,
E. H.
,
1975
,
Aeroelasticity of Plates and Shells
,
Noordhoff
,
Leyden
, Netherlands.
3.
Ashley
,
H.
and
Zartarian
,
G.
,
1956
, “
Piston Theory—New Aerodynamic Tool for Aeroelastician
,”
J. Aeronaut. Sci.
,
23
, pp.
1109
1118
.10.2514/8.3740
4.
Fung
,
Y. C.
, and
Olson
,
M. D.
,
1966
, “
Supersonic Flutter of Circular Cylindrical Shells Subjected to Internal Pressure and Axial Compression
,”
AIAA J.
,
4
, pp.
858
864
.10.2514/3.3558
5.
Fung
,
Y. C.
, and
Olson
M. D.
,
1967
, “
Comparing Theory and Experiment for Supersonic Flutter of Circular Cylindrical Shells
,”
AIAA J.
,
5
, pp.
1849
1856
.10.2514/3.4315
6.
Evensen
,
D. A.
, and
Olson
,
M. D.
,
1967
, “
Nonlinear Flutter of a Circular Cylindrical Shell in Supersonic Flow
,” NASA Technical Note No. D-4265.
7.
Evensen
,
D. A.
, and
Olson
,
M. D.
,
1968
, “
Circumferentially Traveling Wave Flutter of Circular Cylindrical Shell
,”
AIAA J.
,
6
, pp.
1522
1527
.10.2514/3.4799
8.
Dowell
,
E. H.
,
1966
, “
Flutter of Infinitely Long Plates and Shells. Part II
,”
AIAA J.
,
4
, pp.
1510
1518
.10.2514/3.3728
9.
Carter
,
L. L.
, and
Stearman
,
R. O.
,
1968
, “
Some Aspects of Cylindrical Panel Flutter
,”
AIAA J.
6
, pp.
37
43
.
10.2514/3.4438
10.
Amabili
,
M.
and
Pellicano
,
F.
, “
Nonlinear Supersonic Flutter of Circular Cylindrical Shells
,”
AIAA J.
39
, pp.
564
573
.10.2514/2.1365
11.
Bismarck-Nasr
,
M. N.
,
1976
, “
Finite Element Method Applied to the Supersonic Flutter of Circular Cylindrical Shells
,”
Int. J. Numer. Methods Eng.
,
10
, pp.
423
435
.10.1002/nme.1620100212
12.
Ganapathi
,
M.
,
Varadan
,
T. K.
, and
Jijen
,
J.
,
1994
, “
Field Consistent Element Applied to Flutter Analysis of Circular Cylindrical Shells
,”
J. Sound Vib.
,
171
, pp.
509
527
.10.1006/jsvi.1994.1137
13.
Shulman
,
Y.
,
1959
, “
Vibration and Flutter of Cylindrical and Conical Shells
,” MIT ASRL Report No. 74-2 (OSR Technical Report No. 59-776).
14.
Ueda
,
T.
,
Kobayashi
,
S.
, and
Kihira
,
M.
,
1977
, “
Supersonic Flutter of Truncated Conical Shells
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
20
, pp.
13
30
.
15.
Dixon
,
S. C.
, and
Hudson
,
M. L.
,
1970
, “
Flutter, Vibration and Buckling of Truncated Orthotropic Conical Shells With Generalized Elastic Edge Restraint
,” NASA Technical Note No. D-5759.
16.
Miserento
,
R.
, and
Dixon
,
S. C.
,
1971
, “
Vibration and Flutter Tests of a Pressurized Thin Walled Truncated Conical Shell
,” NASA Technical Note No. D-6106.
17.
Bismarck-Nasr
,
M. N.
, and
Costa-Savio
,
H. R.
,
1979
, “
Finite Element Solution of the Supersonic Flutter of Conical Shells
,”
AIAA J.
17
, pp.
1148
1150
.10.2514/3.61291
18.
Sunder
,
P. J.
,
Ramakrishnan
,
V. C.
, and
Sengupta
,
S.
,
1983
, “
Finite Element Analysis of 3-Ply Laminated Conical Shell for Flutter
,”
Int. J. Numer Methods Eng.
,
19
, pp.
1183
1192
.10.1002/nme.1620190806
19.
Sunder
,
P. J.
,
Ramakrishnan
,
V. C.
, and
Sengupta
,
S.
,
1983
, “
Optimum Cone Angles in Aeroelastic Flutter
,”
Comput. Struct.
,
17
, pp.
25
29
.10.1016/0045-7949(83)90024-X
20.
Mason
,
D. R.
, and
Blotter
,
P. T.
,
1986
, “
Finite Element Application to Rocket Nozzle Aeroelasticity
,”
J. Propul. Power
,
2
, pp.
499
507
.10.2514/3.22933
21.
Pidaparti
,
R. M. V.
, and
Yang Henry
,
T. Y.
,
1993
, “
Supersonic Flutter Analysis of Composite Plates and Shells
,”
AIAA J.
,
31
, pp.
1109
1117
.10.2514/3.11735
22.
Kraus
,
H.
,
1967
,
Thin Elastic Shells
,
John Wiley and Sons
,
New York
.
23.
Narasimhan
,
M. C.
, and
Alwar
,
R. S.
,
1992
, “
Free Vibration Analysis of Laminated Orthotropic Spherical Shell
,”
J. Sound Vib.
,
54
, pp.
515
529
.10.1016/0022-460X(92)90783-T
24.
Sai
Ram
,
K. S.
, and
Sreedhar
Babu
,
T.
,
2002
, “
Free Vibration of Composite Spherical Shell Cap With and Without a Cutout
,”
Comput. Struct.
,
80
, pp.
1749
1756
.10.1016/S0045-7949(02)00210-9
25.
Kalnins
A.
,
1961
, “
Free Non-Symmetric Vibrations of Shallow Spherical Shells
,”
J. Acoust. Soc. Am.
,
33
, pp.
1102
1107
.10.1121/1.1908908
26.
Kalnins
,
A.
,
1964
, “
Effect of Bending on Vibration of Spherical Shell
,”
J. Acoust. Soc. Am.
,
36
, pp.
74
81
.10.1121/1.1918916
27.
Cohen
,
G. A.
,
1965
, “
Computer Analysis of Asymmetric Free Vibrations of Ring Stiffened Orthotropic Shells of Revolution
,”
AIAA J.
,
3
, pp.
2305
2312
.10.2514/3.3360
28.
Navaratna
,
D. R.
,
1966
, “
Natural Vibration of Deep Spherical Shells
,”
AIAA J.
,
4
, pp.
2056
2058
.10.2514/3.3847
29.
Webster
,
J. J.
,
1967
, “
Free Vibrations of Shells of Revolution Using Ring Finite Elements
,”
Int. J. Mech. Sci.
,
9
, pp.
559
570
.10.1016/0020-7403(67)90055-0
30.
Greene
,
B. E.
,
Jones
,
R. E.
,
Mc Lay
,
R.W.
, and
Strome
,
D. R.
,
1968
, “
Dynamic Analysis of Shells Using Doubly Curved Finite Elements
,”
Proceedings of the Second Conference on Matrix Methods in Structural Mechanics
, Wright-Patterson Air Force Base, OH, October 15–17, Paper No. AFFDL-TR-68-150, pp.
185
212
.
31.
Tessler
,
A.
, and
Spiridigliozzi
,
L.
,
1988
, “
Resolving Membrane and Shear Locking Phenomena in Curved Deformable Axisymmetric Shell Element
,”
Int. J. Numer. Methods Eng.
,
26
, pp.
1071
1080
.10.1002/nme.1620260506
32.
Gautham
,
B. P.
, and
Ganesan
,
N.
,
1992
, “
Free Vibration Analysis of Thick Spherical Shells
,”
Comput. Struct.
,
45
, pp.
307
313
.10.1016/0045-7949(92)90414-U
33.
Buchanan
,
G. R.
, and
Rich
,
B. S.
,
2002
, “
Effect of Boundary Conditions on Free Vibrations of Thick Isotropic Spherical Shells
,”
J. Vib. Control
,
8
, pp.
389
403
.10.1177/107754602023688
34.
Gautham
,
B. P.
, and
Ganesan
,
N.
,
1997
, “
Free Vibration Characteristics of Isotropic and Laminated Orthotropic Shell Caps
,”
J. Sound Vib.
,
204
, pp.
17
40
.10.1006/jsvi.1997.0904
35.
Ventsel
,
E. S.
,
Naumenko
,
V.
,
Strelnikova
,
E.
, and
Yeseleva
,
E.
,
2010
, “
Free Vibrations of Shells of Revolution Filled With Fluid
,”
Eng. Anal. Boundary Elem.
,
34
, pp.
856
862
.10.1016/j.enganabound.2010.05.004
You do not currently have access to this content.