Ambient vibration sources in many prime energy harvesting applications are characterized as having stochastic response with spectra concentrated at low frequencies and steadily reduced power density as frequency increases (colored noise). To overcome challenges in designing linear resonant systems for such inputs, nonlinear restoring potential shaping has become a popular means of extending a harvester's bandwidth downward towards the highest concentration of excitation energy available. Due to recent works which have individually probed by analysis, simulation, or experiment the opportunity for harvester restoring potential shaping near the elastic stability limit (buckling transition) to improve power generation in stochastic environments—in most cases focusing on postbuckled designs and in some cases arriving at conflicting conclusions—we seek to provide a consolidated and insightful investigation for energy harvester performance employing designs in this critical regime. Practical aspects drive the study and encourage evaluation of the role of asymmetries in restoring potential forms. New analytical, numerical, and experimental investigations are conducted and compared to rigorously assess the opportunities and reach well-informed conclusions. Weakly bistable systems are shown to potentially provide minor performance benefits but necessitate a priori knowledge of the excitation environment and careful avoidance of asymmetries. It is found that a system designed as close to the elastic stability limit as possible, without passing the buckling transition, may be the wiser solution to energy harvesting in colored noise environments.

References

References
1.
Cruz
,
J.
,
2008
,
Ocean Wave Energy: Current Status and Future Perspectives
,
Springer
,
Berlin
.
2.
Shama
,
A. A.
,
Mander
,
J. B.
,
Chen
,
S. S.
, and
Aref
,
A. J.
,
2001
, “
Ambient Vibration and Seismic Evaluation of a Cantilever Truss Bridge
,”
Eng. Struct.
,
23
, pp.
1281
1292
.10.1016/S0141-0296(01)00027-X
3.
Albers
,
W. F.
,
Hag-Elsafi
,
O.
, and
Alampalli
,
S.
,
2007
, “
Dynamic Analysis of the Bentley Creek Bridge With FRP Deck
,”
U
.S. Department of Transportation Federal Highway Administration, Report No. SR-07/150.
4.
Kumarasena
,
S.
,
Jones
,
N. P.
,
Irwin
,
P.
, and
Taylor
,
P.
,
2007
, “
Wind-Induced Vibration of Stay Cables
,” U.S. Department of Transportation Federal Highway Administration, Report No. FHWA-RD-05-083.
5.
Dykman
,
M.
, and
Lindenberg
,
K.
,
1994
, “
Fluctuations in Nonlinear Systems Driven by Colored Noise
,”
Contemporary Problems in Statistical Physics
,
Weiss
G.H.
, ed.,
SIAM
,
Philadelphia
.
6.
Zhu
,
D.
,
Tudor
,
M. J.
, and
Beeby
,
S. P.
,
2010
, “
Strategies for Increasing the Operating Frequency Range of Vibration Energy Harvesters: A Review
,”
Meas. Sci. Technol.
,
21
, p.
022001
.10.1088/0957-0233/21/2/022001
7.
Harne
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
, p.
023001
.10.1088/0964-1726/22/2/023001
8.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2010
, “
Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator
,”
Phys. D.
,
239
, pp.
640
653
.10.1016/j.physd.2010.01.019
9.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
, “
Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator With Electromechanical Coupling
,”
J. Sound Vib.
,
330
, pp.
2339
2353
.10.1016/j.jsv.2010.11.018
10.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2012
, “
Energy Harvesting in the Super-Harmonic Frequency Region of a Twin-Well Oscillator
,”
J. Appl. Phys.
,
111
, p.
044501
.10.1063/1.3684579
11.
Quinn
,
D. D.
,
Triplett
,
A. L.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2011
, “
Comparing Linear and Essentially Nonlinear Vibration-Based Energy Harvesting
,”
ASME J. Vib. Acoust.
,
133
, p.
011001
.10.1115/1.4002782
12.
Quinn
,
D. D.
,
Triplett
,
A. L.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2011
, “
Energy Harvesting from Impulsive Loads Using Intentional Essential Nonlinearities
,”
ASME J. Vib. Acoust.
,
133
, p.
011004
.10.1115/1.4002787
13.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C-K.
,
2012
, “
Improving Functionality of Vibration Energy Harvesters Using Magnets
,”
J. Intell. Mater. Syst. Struct.
,
23
(
13
), pp.
1433
1449
.10.1177/1045389X12443016
14.
Zhao
,
S.
, and
Erturk
,
A.
,
2013
, “
On the Stochastic Excitation of Monostable and Bistable Electroelastic Power Generators: Relative Advantages and Tradeoffs in a Physical System
,”
Appl. Phys. Lett.
,
102
, p.
103902
.10.1063/1.4795296
15.
Daqaq
,
M. F.
,
2010
, “
Response of Uni-Modal Duffing-Type Harvesters to Random Forced Excitations
,”
J. Sound Vib.
,
329
, pp.
3621
3631
.10.1016/j.jsv.2010.04.002
16.
Daqaq
,
M. F.
,
2011
, “
Transduction of a Bistable Inductive Generator Driven by White and Exponentially Correlated Gaussian Noise
,”
J. Sound Vib.
,
330
, pp.
2554
2564
.10.1016/j.jsv.2010.12.005
17.
Daqaq
,
M. F.
,
2012
, “
On Intentional Introduction of Stiffness Nonlinearities for Energy Harvesting Under White Gaussian Excitations
,”
Nonlinear Dyn.
,
69
, pp.
1063
1079
.10.1007/s11071-012-0327-0
18.
Meimukhin
,
D.
,
Cohen
,
N.
, and
Bucher
,
I.
,
2013
, “
On the Advantage of a Bistable Energy Harvesting Oscillator Under Bandlimited Stochastic Excitation
,”
J. Intell. Mater. Syst. Struct.
,
24
, pp.
1736
1746
.10.1177/1045389X13484102
19.
Green
,
P. L.
,
Papatheou
,
E.
, and
Sims
,
N. D.
,
2013
, “
Energy Harvesting From Human Motion and Bridge Vibrations: An Evaluation of Current Nonlinear Energy Harvesting Solutions
,”
J. Intell. Mater. Syst. Struct.
,
24
, pp.
1494
1505
.10.1177/1045389X12473379
20.
Cohen
,
N.
,
Bucher
,
I.
, and
Feldman
,
M.
,
2012
, “
Slow-Fast Response Decomposition of a Bi-Stable Energy Harvester
,”
Mech. Syst. Signal Process.
,
31
, pp.
29
39
.10.1016/j.ymssp.2012.04.011
21.
Sneller
,
A. J.
,
Cette
,
P.
, and
Mann
,
B. P.
,
2011
, “
Experimental Investigation of a Post-Buckled Piezoelectric Beam With an Attached Central Mass Used to Harvest Energy
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
225
, pp.
497
509
.10.1177/0957650910396417
22.
Harne
,
R. L.
,
Thota
,
M.
, and
Wang
,
K. W.
,
2013
, “
Concise and High-Fidelity Predictive Criteria for Maximizing Performance and Robustness of Bistable Energy Harvesters
,”
Appl. Phys. Lett.
,
102
, p.
053903
.10.1063/1.4790381
23.
Kondepudi
,
D. K.
,
Prigogine
,
I.
, and
Nelson
,
G.
,
1985
, “
Sensitivity of Branch Selection in Nonequilibrium Systems
,”
Phys. Lett. A
,
111
, pp.
29
32
.10.1016/0375-9601(85)90795-9
24.
Kondepudi
,
D. K.
,
Moss
,
F.
, and
McClintock
,
P. V. E.
,
1986
, “
Branch Selection in the Presence of Coloured Noise
,”
Phys. Lett A
,
114
, pp.
68
74
.10.1016/0375-9601(86)90481-0
25.
Liao
,
Y.
, and
Sodano
,
H. A.
,
2009
, “
Structural Effects and Energy Conversion Efficiency of Power Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
20
, pp.
505
514
.10.1177/1045389X08099468
26.
Risken
,
H.
,
1989
,
The Fokker-Planck Equation: Methods of Solution and Applications
,
2nd ed
,
Springer-Verlag
,
Berlin
.
27.
Moss
,
F.
, and
McClintock
,
P. V. E.
, eds.,
1989
,
Noise in Nonlinear Dynamical Systems, Volume 1: Theory of Continuous Fokker-Planck Systems
,
Cambridge University
,
Cambridge
, UK.
28.
Hänggi
,
P.
, and
Jung
,
P.
,
1995
, “
Colored Noise in Dynamical Systems
,”,
I.
Prigogine
and
S. A.
Rice
, eds.,
Advances in Chemical Physics
, Vol. 89,
Wiley
,
New York
, pp.
239
326
.
29.
Hänggi
,
P.
,
1978
, “
Correlation Functions and Master Equations of Generalized (Non-Markovian) Langevin Equations
,”
Z. für Physik B
,
31
, pp.
407
416
.10.1007/BF01351552
30.
Hänggi
,
P.
,
Mroczkowski
,
T. J.
,
Moss
,
F.
, and
McClintock
,
P. V. E.
,
1985
, “
Bistability Driven by Colored Noise: Theory and Experiment
,”
Phys. Rev. A
,
32
, pp.
695
698
.10.1103/PhysRevA.32.695
31.
Fronzoni
,
L.
,
Grigolini
,
P.
,
Hänggi
,
P.
,
Mannella
,
R.
, and
McClintock
,
P. V. E.
,
1986
, “
Bistable Oscillator Dynamics Driven by Nonwhite Noise
,”
Phys. Rev. A
,
33
, pp.
3320
3327
.10.1103/PhysRevA.33.3320
32.
Moss
,
F.
, and
McClintock
,
P. V. E.
, eds.,
1989
,
Noise in Nonlinear Dynamical Systems, Volume 3: Experiments and Simulations
,
Cambridge University
,
Cambridge
, UK.
You do not currently have access to this content.