The fundamental limits of cantilevered piezoelectric energy harvesters have not been well established. As with any other power generation technology, it is critical to establish the limits of power output and efficiency. Mathematical models for piezoelectric energy harvester power output have seen continued refinement, but these models have mainly been used and compared to individual harvester designs. Moreover, existing models all assume power scales with acceleration input, and take no account for the upper limit of the acceleration due to the ultimate strength of the piezoelectric material. Additionally, models for efficiency have been developed, but the limits have not been thoroughly explored. In this paper, we present the upper limits of input acceleration and output power for a piezoelectric harvester device. We then use these expressions, along with a previously developed ideal design method, to explore the upper limits of power production across a range of system masses and excitation frequencies. We also investigate general efficiency limits of these devices. We show the upper limit using an existing model and develop an alternate model that is applicable to excitation sources that are not capable of energy recovery.

References

1.
Roundy
,
S.
,
2005
, “
On the Effectiveness of Vibration-Based Energy Harvesting
,”
J. Intel. Mat. Syst. Str.
,
16
, pp.
809
823
.10.1177/1045389X05054042
2.
Anton
,
S.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003-2006)
,”
Smart Mater. Struct.
,
16
(
3
), p.
R1
.10.1088/0964-1726/16/3/R01
3.
Guyomar
,
D.
,
Badel
,
A.
,
Lefeuvre
,
E.
, and
Richard
,
C.
,
2005
, “
Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing
,”
IEEE Trans. Ultrason. Ferr.
,
52
(
4
), pp.
584
595
.10.1109/TUFFC.2005.1428041
4.
Shu
,
Y. C.
, and
Lien
,
I. C.
,
2006
, “
Analysis of Power Output for Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
,
15
, pp.
1499
1512
.10.1088/0964-1726/15/6/001
5.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.10.1115/1.2890402
6.
Main
,
J. A.
,
Garcia
,
E.
, and
Howard
,
D.
,
1994
, “
Optimal Placement and Sizing of Paired Piezoactuators in Beams and Plates
,”
Smart Mater. Struct.
,
3
, pp.
373
381
.10.1088/0964-1726/3/3/013
7.
Donoso
,
A.
, and
Sigmund
,
O.
,
2009
, “
Optimization of Piezoelectric Bimorph Actuators With Active Damping for Static and Dynamic Loads
,”
Struct. Multidiscip. Opt.
,
38
, pp.
171
183
.10.1007/s00158-008-0273-0
8.
Dietl
,
J. M.
, and
Garcia
,
E.
,
2010
, “
Beam Shape Optimization for Power Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
5
), pp.
633
646
.10.1177/1045389X10365094
9.
Yoon
,
H.
,
Washington
,
G.
, and
Danak
,
A.
,
2005
, “
Modeling, Optimization, and Design of Efficient Initially Curved Piezoceramic Unimorphs for Energy Harvesting Application
,”
J. Intell. Mater. Syst. Struct.
,
16
, pp.
877
888
.10.1177/1045389X05055759
10.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J. M.
,
2004
,
Energy Scavenging for Wireless Sensor Networks
,
Kluwer Academic Publishers
,
Norwell, MA
.
11.
Shafer
,
M. W.
,
Bryant
,
M.
, and
Garcia
,
E.
,
2012
, “
Designing Maximum Power Output Into Piezoelectric Energy Harvesters
,”
Smart Mater. Struct.
,
21
(
8
), p.
085008
.10.1088/0964-1726/21/8/085008
12.
Shafer
,
M. W.
,
Bryant
,
M.
, and
Garcia
,
E.
,
2012
, “
A Practical Power Maximization Design Guide for Piezoelectric Energy Harvesters Inspired by Avian Bio-Loggers
,”
ASME 2012 Conference on Smart Materials, Adapative Structures and Intelligent Systems
,
Stone Mountain, GA
, September 19–21,
ASME
Paper No. SMASIS2012-8071.10.1115/SMASIS2012-8071
13.
Wickenheiser
,
A.
,
2013
, “
Model Reduction in Stochastic Vibration Energy Harvesting Using Compressive Sampling
,”
Smart Mater. Struct.
,
22
(
9
), p.
094029
.10.1088/0964-1726/22/9/094029
14.
Feenstra
,
J.
,
Granstrom
,
J.
, and
Sodano
,
H.
,
2008
, “
Energy Harvesting Through a Backpack Employing a Mechanically Amplified Piezoelectric Stack
,”
Mech. Syst. Signal Process.
,
22
(
3
), pp.
742
734
.10.1016/j.ymssp.2007.09.015
15.
Kornbluh
,
R.
,
Pelrine
,
R.
,
Pei
,
Q.
,
Heydt
,
R.
,
Stanford
,
S.
,
Oh
,
S.
, and
Eckerle
,
J.
,
2002
, “
Electroelastomers: Applications of Dielectric Elastomer Transducers for Actuation, Generation and Smart Structures
,”
SPIE 9th Annual International Symposium on Smart Structures and Materials, International Society for Optics and Photonics
,
San Diego, CA
, March 17–21, pp.
254
270
.10.1117/12.475072
16.
Shenck
,
N. S.
, and
Paradiso
,
J. A.
,
2001
, “
Energy Scavenging with Shoe-Mounted Piezoelectrics
,”
IEEE Micro
,
21
(
3
), pp.
30
42
.10.1109/40.928763
17.
Reissman
,
T.
,
MacCurdy
,
R. B.
, and
Garcia
,
E.
,
2011
, “
Electrical Power Generation From Insect Flight
,”
SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics
,
San Diego, CA
, March 6–10, p.
797702
.10.1117/12.880702
18.
Aktakka
,
E. E.
,
Kim
,
H.
, and
Najafi
,
K.
,
2011
, “
Energy Scavenging from Insect Flight
,”
J. Micromech. Microeng.
,
21
, p.
095016
.10.1088/0960-1317/21/9/095016
19.
Shafer
,
M. W.
,
MacCurdy
,
R.
,
Garcia
,
E.
, and
Winkler
,
D.
,
2012
, “
Harvestable Vibrational Energy From an Avian Source: Theoretical Predictions vs. Measured Values
,”
SPIE Smart Structures and Material and Nondestructive Evaluation and Health Monitoring
, San Diego, CA, March 11–15, Paper No. 834103.10.1117/12.915370
20.
Shu
,
Y. C.
, and
Lien
,
I. C.
,
2006
, “
Efficiency of Energy Conversion for a Piezoelectric Power Harvesting System
,”
J. Micromech. Microeng.
,
16
, pp.
2429
2438
.10.1088/0960-1317/16/11/026
21.
Lindstedt
,
S. L.
,
LaStayo
,
P. C.
, and
Reich
,
T. E.
,
2001
, “
When Active Muscles Lengthen: Properties and Consequences of Eccentric Contractions
,”
Physiology
,
16
(
6
), pp.
256
261
.
22.
Lefeuvre
,
E.
,
Badel
,
A.
,
Richard
,
C.
, and
Guyomar
,
D.
,
2005
, “
Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction
,”
J. Intell. Mater. Syst. Struct.
,
16
, pp.
865
876
.10.1177/1045389X05056859
23.
Wickenheiser
,
A.
, and
Garcia
,
E.
,
2010
, “
Power Optimization of Vibration Energy Harvesters Utilizing Passive and Active Circuits
,”
J. Intell. Mater. Syst. Struct.
,
21
, pp.
1343
1361
.10.1177/1045389X10376678
24.
Hagood
,
N. W.
,
Chung
,
W. H.
, and
von Flotow
,
A.
,
1990
, “
Modelling of Piezoelectric Actuator Dynamics for Active Structural Control
,”
J. Intell. Mater. Syst. Struct.
,
1
, pp.
327
354
.10.1177/1045389X9000100305
25.
Sodano
,
H. A.
,
Park
,
G.
, and
Inman
,
D. J.
,
2004
, “
Estimation of Electric Charge Output for Piezoelectric Energy Harvesting
,”
Strain
,
40
, pp.
49
58
.10.1111/j.1475-1305.2004.00120.x
26.
Liao
,
Y.
, and
Sodano
,
H. A.
,
2009
, “
Structural Effects and Energy Conversion Efficiency of Power Harvesting
”.
J. Intell. Mater. Syst. Struct.
,
20
, pp.
505
514
.10.1177/1045389X08099468
27.
Inman
,
D. J.
,
2008
,
Engineering Vibration
, 3rd ed.,
Pearson Prentice-Hall
,
Upper Saddle River, NJ
.
28.
Hill
,
A. V.
,
1960
, “
Production and Absorption of Work by Muscle
,”
Science
,
131
(
3404
), pp.
897
903
.10.1126/science.131.3404.897
29.
Konow
,
N.
,
Azizi
,
E.
, and
Roberts
,
T. J.
,
2012
, “
Muscle Power Attenuation by Tendon During Energy Dissipation
,”
Proc. R. Soc., London, Ser. B
,
279
(
1731
), pp.
1108
1113
.10.1098/rspb.2011.1435
30.
Abbott
,
B. C.
,
Bigland
,
B.
, and
Ritchie
,
J. M.
,
1952
, “
The Physiological Cost of Negative Work
,”
J. Physiol.
,
117
(
3
), pp.
380
390
.
31.
Aura
,
O.
, and
Komi
,
P.
,
1986
, “
Mechanical Efficiency of Pure Positive and Pure Negative Work With Special Reference to the Work Intensity
,”
Int. J. Sports Med.
,
7
(
01
), pp.
44
49
.10.1055/s-2008-1025734
32.
Davies
,
C.
, and
Baknes
,
C.
,
1972
, “
Negative (Eccentric) Work. II. Physiological Responses to Walking Uphill and Downhill on a Motor-Driven Treadmill
,”
Ergonomics
,
15
(
2
), pp.
121
131
.10.1080/00140137208924416
33.
Begun
,
S. J.
,
1949
, “
Standards of Piezoelectric Crystals, 1949
,”
Proc. IRE
,
37
(
12
), pp.
1378
1395
.10.1109/JRPROC.1949.229975
34.
Channel Industries Inc.
,
2012
, “
Piezoelectric Ceramics Catalog
,” http://www.channelindustries.com/ncludes/chanat.pdf
35.
APC International
,
2012
, “
Physical and Piezoelectric Properties of APC Materials
,” http://www.americanpiezo.com/apc-materials/piezoelectric-properties.html
36.
Piezo Systems, Inc.
,
2012
, “
Piezoceramic Materials and Properties
,” http://www.piezo.com/prodmaterialprop.html
37.
Fu
,
R.
, and
Zhang
,
T.
,
2000
, “
Influences of Temperature and Electric Field on the Bending Strength of Lead Zirconate Titanate Ceramics
,”
Acta Mater.
,
48
, pp.
1729
1740
.10.1016/S1359-6454(00)00010-0
38.
Makino
,
H.
, and
Kamiya
,
N.
,
1994
, “
Effects of DC Electric Field on Mechanical Properties of Piezoelectric Ceramics
,”
Jpn. J. Appl. Phys.
,
33
(
9B
), pp.
5323
5327
.10.1143/JJAP.33.5323
39.
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting from Base Excitations
,”
Smart Mater. Struct.
,
18
, p.
025009
.10.1088/0964-1726/18/2/025009
You do not currently have access to this content.