This paper investigates the vibration mode structure of three-dimensional, cyclically symmetric centrifugal pendulum vibration absorber (CPVA) systems. The rotor in the system has two translational, one rotational, and two tilting degrees of freedom. The equations of motion for the three-dimensional model, including the rotor tilting, are derived to study the modes analytically and numerically. Only three mode types exist: rotational, translational-tilting, and absorber modes. The rotational and absorber modes have identical properties to those of in-plane models. Only the translational-tilting modes contain rotor tilting. The veering/crossing behavior between the eigenvalue loci is derived analytically.

References

References
1.
Carter
,
B. C.
, 1929, “
Rotating Pendulum Absorbers With Partly Solid and Partly Liquid Inertia Members With Mechanical or Fluid Damping
,” British Patent No. 337.
2.
Den Hartog
,
J. P.
,
1938
, “
Tuned Pendulums as Torsional Vibration Eliminators
,”
Stephen Timoshenko 60th Anniversary Volume
,
Macmillan
,
New York
, pp.
17
26
.
3.
Lee
,
C.-T.
, and
Shaw
,
S. W.
,
1997
, “
The Non-Linear Dynamic Response of Paired Centrifugal Pendulum Vibration Absorbers
,”
J. Sound Vib.
,
203
(
5
), pp.
731
743
.10.1006/jsvi.1996.0707
4.
Chao
,
C.-P.
,
Lee
,
C.-T.
, and
Shaw
,
S. W.
,
1997
, “
Non-Unison Dynamics of Multiple Centrifugal Pendulum Vibration Absorbers
,”
J. Sound Vib.
,
204
(
5
), pp.
769
794
.10.1006/jsvi.1997.0960
5.
Lee
,
C.-T.
,
Shaw
,
S. W.
, and
Coppola
, V
. T.
,
1997
, “
A Subharmonic Vibration Absorber for Rotating Machinery
,”
ASME J. Vibr. Acoust.
,
119
(
4
), pp.
590
595
.10.1115/1.2889766
6.
Chao
,
C.-P.
,
Shaw
,
S. W.
, and
Lee
,
C.-T.
,
1997
, “
Stability of the Unison Response for a Rotating System With Multiple Tautochronic Pendulum Vibration Absorbers
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
149
156
.10.1115/1.2787266
7.
Chao
,
C. P.
, and
Shaw
,
S. W.
,
1998
, “
The Effects of Imperfections on the Performance of the Subharmonic Vibration Absorber System
,”
J. Sound Vib.
,
215
(
5
), pp.
1065
1099
.10.1006/jsvi.1998.1634
8.
Alsuwaiyan
,
A. S.
, and
Shaw
,
S. W.
,
1999
, “
Localization of Free Vibration Modes in Systems of Nearly-Identical Vibration Absorbers
,”
J. Sound Vib.
,
228
(
3
), pp.
703
711
.10.1006/jsvi.1999.2470
9.
Chao
,
C.-P.
, and
Shaw
,
S. W.
,
2000
, “
The Dynamic Response of Multiple Pairs of Subharmonic Torsional Vibration Absorbers
,”
J. Sound Vib.
,
231
(
2
), pp.
411
431
.10.1006/jsvi.1999.2722
10.
Alsuwaiyan
,
A. S.
, and
Shaw
,
S. W.
,
2002
, “
Performance and Dynamic Stability of General Path Centrifugal Pendulum Vibration Absorbers
,”
J. Sound Vib.
,
252
(
5
), pp.
791
815
.10.1006/jsvi.2000.3534
11.
Alsuwaiyan
,
A. S.
, and
Shaw
,
S. W.
,
2003
, “
Steady-State Responses in Systems of Nearly-Identical Vibration Absorbers
,”
ASME J. Vibr. Acoust.
,
125
(
1
), pp.
80
87
.10.1115/1.1522420
12.
Vidmar
,
B. J.
,
Shaw
,
S. W.
,
Feeny
,
B. F.
, and
Geist
,
B. K.
,
2013
, “
Nonlinear Interactions in Systems of Multiple Order Centrifugal Pendulum Vibration Absorbers
,”
ASME J. Vibr. Acoust.
,
135
(
6
), p.
061012
.10.1115/1.4024969
13.
Albright
,
M.
,
Crawford
,
T.
, and
Speckhart
,
F.
,
1994
, “
Dynamic Testing and Evaluation of the Torsional Vibration Absorber
,”
SAE
Technical Paper 942519.10.4271/942519
14.
Nester
,
T. M.
,
Schmitz
,
P. M.
,
Haddow
,
A. G.
, and
Shaw
,
S. W.
,
2004
, “
Experimental Observations of Centrifugal Pendulum Vibration Absorbers
,”
10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, March 7–11, Paper No. ISROMAC10-2004-043.
15.
Bauchau
,
O. A.
,
Rodriguez
,
J.
, and
Chen
,
S.-Y.
,
2003
, “
Modeling the Bifilar Pendulum Using Nonlinear, Flexible Multibody Dynamics
,”
J. Am. Helicopter Soc.
,
48
(
1
), pp.
53
62
.10.4050/JAHS.48.53
16.
Cronin
,
D. L.
,
1992
, “
Shake Reduction in an Automobile Engine by Means of Crankshaft-Mounted Pendulums
,”
Mech. Mach. Theory
,
27
(
5
), pp.
517
533
.10.1016/0094-114X(92)90041-F
17.
Shi
,
C.
, and
Parker
,
R. G.
,
2012
, “
Modal Properties and Stability of Centrifugal Pendulum Vibration Absorber Systems With Equally-Spaced, Identical Absorbers
,”
J. Sound Vib.
,
331
(
21
), pp.
4807
4824
.10.1016/j.jsv.2012.05.018
18.
Shi
,
C.
, and
Parker
,
R. G.
,
2013
, “
Modal Structure of Centrifugal Pendulum Vibration Absorber Systems With Multiple Cyclically Symmetric Groups of Absorbers
,”
J. Sound Vib.
,
332
(
18
), pp.
4339
4353
.10.1016/j.jsv.2013.03.009
19.
Shi
,
C.
,
Parker
,
R. G.
, and
Shaw
,
S. W.
,
2013
, “
Tuning of Centrifugal Pendulum Vibration Absorbers for Translational and Rotational Vibration Reduction
,”
Mech. Mach. Theory
,
66
, pp.
56
65
.10.1016/j.mechmachtheory.2013.03.004
20.
Denman
,
H. H.
,
1992
, “
Tautochronic Bifilar Pendulum Torsion Absorbers for Reciprocating Engines
,”
J. Sound Vib.
,
159
(
2
), pp.
251
277
.10.1016/0022-460X(92)90035-V
21.
Miao
,
W.
, and
Mouzakis
,
T.
,
1980
, “
Bifilar Analysis Study
,” Vol. 1, NASA Tech. Rep. No. NASA-CR-159227.
22.
Sopher
,
R.
,
Studwell
,
R. E.
,
Carssarino
,
S.
, and
Kottapalli
,
S. P. R.
,
1982
, “
Coupled Rotor/Airframe Vibration Analysis
,” NASA Tech. Rep. No. NASA-CR-3582.
23.
Olson
,
B. J.
,
2006
, “
Order-Tuned Vibration Absorbers for Systems With Cyclic Symmetry With Applications to Turbomachinery
,” Ph.D. thesis, Michigan State University, East Lansing, MI.
24.
Kim
,
H.
, and
Shen
,
I. Y.
,
2009
, “
Ground-Based Vibration Response of a Spinning, Cyclic, Symmetric Rotor With Gyroscopic and Centrifugal Softening Effects
,”
ASME J. Vibr. Acoust.
,
131
(
2
), p.
021007
.10.1115/1.3025847
25.
Eritenel
,
T.
, and
Parker
,
R. G.
,
2009
, “
Modal Properties of Three-Dimensional Helical Planetary Gears
,”
J. Sound Vib.
,
325
(
1-2
), pp.
397
420
.10.1016/j.jsv.2009.03.002
26.
Perkins
,
N. C.
, and
Mote
, Jr.,
C. D.
,
1986
, “
Comments on Curve Veering in Eigenvalue Problems
,”
J. Sound Vib.
,
106
(
3
), pp.
451
463
.10.1016/0022-460X(86)90191-4
27.
Lin
,
J.
, and
Parker
,
R. G.
,
2001
, “
Natural Frequency Veering in Planetary Gears
,”
Mech. Struct. Mach.
,
29
(
4
), pp.
411
429
.10.1081/SME-100107620
28.
Cooley
,
C. G.
, and
Parker
,
R. G.
,
2012
, “
Vibration Properties of High-Speed Planetary Gears With Gyroscopic Effects
,”
ASME J. Vibr. Acoust.
,
134
(
6
), p.
061014
.10.1115/1.4006646
29.
Meirovitch
,
L.
,
1974
, “
A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,
AIAA J.
,
12
(
10
), pp.
1337
1342
.10.2514/3.49486
30.
Meirovitch
,
L.
,
1975
, “
A Modal Analysis for the Response of Linear Gyroscopic Systems
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
446
450
.10.1115/1.3423597
31.
D'Eleuterio
,
G. M. T.
, and
Hughes
,
P. C.
,
1984
, “
Dynamics of Gyroelastic Continua
,”
ASME J. Applied Mech.
,
51
(
2
), pp.
415
422
.10.1115/1.3167634
32.
Stakgold
,
I.
,
1979
,
Green's Functions and Boundary Value Problems
,
Wiley
,
New York
.
You do not currently have access to this content.