This paper discusses a perturbation approach to the calculation of the natural frequencies and mode shapes for both the displacement and the electrostatic potential through-thickness vibration of an infinite piezoelectric plate. The problem is formulated within the coupled theory of linear piezoelectricity. It is described by a set of two coupled differential equations with unknown thickness displacement, the electrostatic potential and a general form of boundary conditions. A consistent perturbation solution to the natural vibration problem is described. An important element not present in the classical eigenvalue perturbation solution is that the small parameter appears in the boundary conditions; a way to handle this complication has been discussed. The natural frequencies and mode shapes obtained using the perturbation approach are compared to exact solutions, demonstrating the effectiveness of the proposed method. The advantage of the perturbation method derives from the fact that coupled piezoelectric results can be obtained from the elastic solution during the postprocessing stage.

References

References
1.
Tiersten
,
H. F.
,
1969
,
Linear Piezoelectric Plate Vibrations
,
Plenum Press
,
New York.
2.
Auld
,
B. A.
,
1973
,
Acoustic Fields and Waves in Solids
,
Wiley
,
New York.
3.
Nowacki
,
W.
,
1983
,
Electromagnetic Effects in Deformable Solids
,
PWN
,
Warsaw
.
4.
Royer
,
D.
, and
Dieulesaint
,
E.
,
2000
,
Elastic Waves in Solids
,
Springer
,
Berlin
.
5.
Tiersten
,
H. F.
,
1963
, “
Thickness Vibrations of Piezoelectric Plates
,”
J. Acoust. Soc. Am.
,
35
, pp.
53
58
.10.1121/1.1918413
6.
Mindlin
,
R. D.
,
1972
, “
High Frequency Vibrations of Piezoelectric Crystal Plates
,”
Int. J. Solids Struct.
,
8
, pp.
895
906
.10.1016/0020-7683(72)90004-2
7.
Mindlin
,
R. D.
,
1974
, “
Coupled Piezoelectric Vibrations of Quartz Plates
,”
Int. J. Solids Struct.
,
10
, pp.
453
459
.10.1016/0020-7683(74)90112-7
8.
Mitchell
,
J. A.
, and
Reddy
,
J. N.
,
1995
, “
A Refined Hybrid Plate Theory for Composite Laminates With Piezoelectric Laminae
,”
Int. J. Solids Struct.
,
32
, pp.
2345
2367
.10.1016/0020-7683(94)00229-P
9.
Dash
,
P.
, and
Singh
,
B. N.
,
2012
, “
Geometrically Nonlinear Free Vibration of Laminated Composite Plate Embedded With Piezoelectric Layers Having Uncertain Material Properties
,”
ASME J. Vibr. Acoust.
,
134
(
6
), pp.
1
13
.10.1115/1.4006757
10.
Cupial
,
P.
,
2005
, “
Three-Dimensional Natural Vibration Analysis and Energy Considerations for a Piezoelectric Rectangular Plate
,”
J. Sound Vib.
,
283
, pp.
1093
1113
.10.1016/j.jsv.2004.06.019
11.
Heyliger
,
P.
, and
Saravanos
,
D. A.
,
1995
, “
Exact Free-Vibration Analysis of Laminated Plates With Embedded Piezoelectric Layers
,”
J. Acoust. Soc. Am.
,
98
, pp.
1547
1557
.10.1121/1.413420
12.
Courant
,
R.
, and
Hilbert
,
D.
,
1953
,
Methods of Mathematical Physics
, Vol.
1
,
Interscience
,
New York
.
13.
Wigner
,
E. P.
,
1959
,
Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra
,
Academic Press
,
New York.
14.
Kato
,
T.
,
1966
,
Perturbation Theory for Linear Operators
,
Springer
,
Berlin
.
15.
Nayfeh
,
A. H.
,
1973
,
Perturbation Methods
,
Wiley
,
New York.
16.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1974
,
Quantum Mechanics: Non-Relativistic Theory
,
3rd ed.
,
Nauka
,
Moscow
.
17.
Friedman
,
B.
,
1956
,
Principles and Techniques of Applied Mathematics
,
Wiley
,
New York
.
18.
Cupial
,
P.
,
2008
,
Coupled Electromechanical Vibration Problems for Piezoelectric Distributed-Parameter Systems
,
Monograph 362, Series Mechanics, Politechnika Krakowska
,
Krakow
.
You do not currently have access to this content.