Mechanical models of damped low-gravity sloshing are developed using a proposed analytical method for arbitrary axisymmetric tanks. It is shown that (a) the complex amplitudes of the force and moment caused by the conventional mechanical model do not coincide with the complex amplitudes of the force and moment calculated from the modal equation of sloshing and (b) these differences arise not only from the damping ratio but also from the surface tension although the surface tension does not cause energy dissipation. A mechanical model for correcting these differences is developed. The mass of this correction model is found to be equal to the mass of the liquid that fills the domain bounded by the meniscus and the plane that includes the contact line of the meniscus with the tank wall. With decreasing Bond number, the correction model mass as well as the damping ratio increase and, therefore, the correction becomes important. The force and moment caused by the conventional uncorrected mechanical model have phase lag with respect to the force and moment calculated from the modal equation of sloshing near the resonant frequency. Therefore, the correction is important for the dynamics and control analysis of a space vehicle.

References

References
1.
Abramson
,
H. N.
, ed.,
1966
, “The Dynamic Behavior of Liquids in Moving Containers,” NASA Report No. SP-106.
2.
Ibrahim
,
R. A.
,
Pilipchuk
,
V. N.
, and
Ikeda
,
T.
,
2001
, “
Recent Advances in Liquid Sloshing Dynamics
,”
ASME Appl. Mech. Rev.
,
54
, pp.
133
199
.10.1115/1.3097293
3.
Dodge
,
F. T.
, and
Garza
,
L. R.
,
1967
, “
Experimental and Theoretical Studies of Liquid Sloshing at Simulated Low Gravity
,”
ASME J. Appl. Mech.
,
34
, pp.
555
562
.10.1115/1.3607743
4.
Bauer
,
H. F.
, and
Eidel
,
W.
,
1990
, “
Linear Liquid Oscillations in Cylindrical Container Under Zero-Gravity
,”
Appl. Micrograv. Tech.
,
2
, pp.
212
220
.
5.
Bauer
,
H. F.
, and
Eidel
,
W.
,
1993
, “
Hydroelastic Vibrations in a Circular Cylindrical Container With a Flexible Bottom in Zero-Gravity
,”
J. Fluid. Struct.
,
7
, pp.
783
802
.10.1006/jfls.1993.1046
6.
Yuanjun
,
H.
,
Xingrui
,
M.
,
Pingping
,
W.
, and
Benli
,
W.
,
2007
, “
Low-Gravity Liquid Nonlinear Sloshing Analysis in a Tank Under Pitching Excitation
,”
J. Sound Vib.
,
299
, pp.
164
177
.10.1016/j.jsv.2006.07.003
7.
Peterson
,
L. D.
,
Crawley
,
E. F.
, and
Hansman
,
R. J.
,
1989
, “
Nonlinear Fluid Slosh Coupled to the Dynamics of a Spacecraft
,”
AIAA J.
27
, pp.
1230
1240
.
10.2514/3.10250
8.
Satterlee
,
H. M.
, and
Reynolds
,
W. C.
,
1964
, “The Dynamics of the Free Liquid Surface in Cylindrical Containers Under Strong Capillary and Weak Gravity Conditions,” Technical Report LG-2, Stanford University, Department of Mechanical Engineering, Stanford, CA.
9.
Chu
,
W. H.
,
1970
, “
Low-Gravity Fuel Sloshing in an Arbitrary Axisymmetric Rigid Tank
,”
ASME J. Appl. Mech.
,
37
, pp.
828
837
.10.1115/1.3408616
10.
Concus
,
P.
,
Crane
,
G. E.
, and
Satterlee
,
H. M.
,
1969
, “Small Amplitude Lateral Sloshing in Spheroidal Containers Under Low Gravitational Conditions,” NASA Report No. CR-72500.
11.
Dodge
,
F. T.
,
Green
,
S. T.
, and
Cruse
,
M. W.
,
1991
, “
Analysis of Small-Amplitude Low Gravity Sloshing in Axisymmetric Tanks
,”
Micrograv. Sci. Tech.
,
4
, pp.
228
234
.
12.
Dodge
,
F. T.
, and
Garza
,
L. R.
,
1970
, “
Simulated Low-Gravity Sloshing in Spherical, Ellipsoidal, and Cylindrical Tanks
,”
J. Spacecraft Rockets
,
7
, pp.
204
206
.10.2514/3.29900
13.
Hung
,
R. J.
,
Lee
,
C. C.
, and
Leslie
,
F. W.
,
1992
, “
Similarity Rules in Gravity Jitter-Related Spacecraft Liquid Propellant Slosh Waves Excitation
,”
J. Fluid Struct.
,
6
, pp.
493
522
.10.1016/0889-9746(92)90028-2
14.
Utsumi
,
M.
,
1998
, “
Low-Gravity Propellant Slosh Analysis Using Spherical Coordinates
,”
J. Fluid. Struct.
,
12
, pp.
57
83
.10.1006/jfls.1997.0125
15.
Utsumi
,
M.
,
2000
, “
Low-Gravity Sloshing in an Axisymmetrical Container Excited in the Axial Direction
,”
ASME J. Appl. Mech.
,
67
, pp.
344
354
.10.1115/1.1307500
16.
Utsumi
,
M.
,
2004
, “
A Mechanical Model for Low-Gravity Sloshing in an Axisymmetric Tank
,”
ASME J. Appl. Mech.
,
71
, pp.
724
730
.10.1115/1.1794700
17.
Utsumi
,
M.
,
2008
, “
Low-Gravity Slosh Analysis for Cylindrical Tanks With Hemiellipsoidal Top and Bottom
,”
J. Spacecraft Rocket
,
45
, pp.
813
821
.10.2514/1.35057
18.
Coney
,
T. A.
, and
Salzman
,
J. A.
,
1971
, “Lateral Sloshing in Oblate Spheroidal Tanks Under Reduced and Normal Gravity Conditions,“NASA Report No. TN D-6250.
19.
Utsumi
,
M.
, 2013, “
Viscous Damping Ratio of Low-Gravity Sloshing in Arbitrary Axisymmetric Tanks
,”
J. Spacecraft Rockets
,
50
, pp. 807–815.10.2514/1.A32264
20.
Dodge
,
F. T.
, and
Garza
,
L. R.
,
1968
, “Simulated Low-Gravity Sloshing in Spherical Tanks and Cylindrical Tanks With Inverted Ellipsoidal Bottoms,” NASA Technical Report No. 6, Contract NAS8-20290, pp.
1
34
.
21.
Stephens
,
D. G.
,
Leonard
,
H. W.
, and
Perry
,
T. W.
,
1962
, “Investigation of the Damping of Liquids in Right-Circular Cylindrical Tanks, Including the Effects of a Time-Variant Liquid Depth,” NASA Report No. TN D-1367.
22.
Abramson
,
H. N.
, and
Garza
,
L. R.
,
1965
, “
Liquid Frequencies and Damping in Compartmented Cylindrical Tanks
,”
J. Spacecraft Rockets
,
2
, pp.
453
455
.10.2514/3.28203
23.
Case
,
K. M.
, and
Parkinson
,
W. C.
,
1957
, “
Damping of Surface Waves in an Incompressible Liquid
,”
J. Fluid Mech.
,
2
, pp.
172
184
.10.1017/S0022112057000051
24.
Sumner
, I
. E.
, and
Stofan
,
A. J.
,
1963
, “An Experimental Investigation of the Viscous Damping of Liquid Sloshing in Spherical Tanks,” NASA Report No. TN D-1991.
25.
Bauer
,
H. F.
, and
Eidel
,
W.
,
1999
, “
Free Oscillations and Response of a Viscous Liquid in a Rigid Circular Cylindrical Tank
,”
Aerosp. Sci. Tech.
,
3
, pp.
495
512
.10.1016/S1270-9638(99)00110-8
26.
Bauer
,
H. F.
, and
Chiba
,
M.
,
2007
, “
Viscous Oscillations in a Circular Cylindrical Tank With Elastic Surface Cover
,”
J. Sound Vib.
,
304
, pp.
1
17
.10.1016/j.jsv.2007.01.045
27.
Bauer
,
H. F.
, and
Komatsu
,
K.
,
1998
, “
Vibration of a Hydroelastic System Consisting of a Sector Shell and Viscous Liquid in Zero Gravity
,”
J. Fluid Struct.
,
12
, pp.
367
385
.10.1006/jfls.1997.0138
You do not currently have access to this content.