The vibration power flow in a submerged infinite constrained layer damping (CLD) cylindrical shell is studied in the present paper using the wave propagation approach. Dynamic equations of the shell are derived with the Hamilton principle in conjunction with the Donnell shell assumptions. Besides, the pressure field in the fluid is described by the Helmholtz equation and the damping characteristics are considered with the complex modulus method. Then, the shell-fluid coupling dynamic equations are obtained by using the coupling between the shell and the fluid. Vibration power flows inputted to the coupled system and transmitted along the shell axial direction are both studied. Results show that input power flow varies with driving frequency and circumferential mode order, and the constrained damping layer will restrict the exciting force inputting power flow into the shell, especially for a thicker viscoelastic layer, a thicker or stiffer constraining layer (CL), and a higher circumferential mode order. Cut-off frequencies do not exist in the CLD cylindrical shell, so that the exciting force can input power flow into the shell at any frequency and for any circumferential mode order. The power flow transmitted in the CLD cylindrical shell exhibits an exponential decay form along its axial direction, which indicates that the constrained damping layer has a good damping effect, especially at middle or high frequencies.

References

References
1.
Teng
,
T. L.
, and
Hu
,
N. K.
,
2001
, “
Analysis of Damping Characteristics for Viscoelastic Laminated Beams
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
3881
3892
.10.1016/S0045-7825(00)00305-4
2.
Oh
,
I. K.
,
2007
, “
Dynamic Characteristics of Cylindrical Hybrid Panels Containing Viscoelastic Layer Based on Layerwise Mechanics
,”
Composites, Part B
,
38
, pp.
159
171
.10.1016/j.compositesb.2006.07.002
3.
Mead
,
D. J.
,
2007
, “
The Measurement of the Loss Factors of Beams and Plates With Constrained and Unconstrained Damping Layers: A Critical Assessment
,”
J. Sound Vib.
,
300
, pp.
744
762
.10.1016/j.jsv.2006.08.023
4.
Liu
,
X. D.
,
Zhang
,
Y. R.
,
He
,
T.
, and
Shan
Y. Ch.
,
2008
, “
Application of Damping Materials in Oil-Pan's Vibration and Noise Control
,”
Noise Vib. Control
,
28
, pp.
132
137
(in Chinese).
5.
Pan
,
H. H.
,
1969
, “
Axisymmetrical Vibrations of a Circular Sandwich Shell With a Viscoelastic Core Layer
,”
J. Sound Vib.
,
9
, pp.
338
348
.10.1016/0022-460X(69)90038-8
6.
Bogdanovich
,
A. E.
,
1975
, “
Parametric Vibrations of Cylindrical Shells With a Viscoelastic Core
,”
Polym. Mech.
,
11
, pp.
718
725
10.1007/BF00859648.
7.
Ramesh
,
T. C.
, and
Ganesan
,
N.
,
1993
, “
Vibration and Damping Analysis of Cylindrical Shells With a Constrained Damping Layer
,”
Comput. Struct.
,
46
, pp.
751
758
.10.1016/0045-7949(93)90403-Z
8.
Ramesh
,
T. C.
, and
Ganesan
,
N.
,
1994
, “
Finite Element Analysis of Cylindrical Shells With a Constrained Viscoelastic Layer
,”
J. Sound Vib.
,
172
, pp.
359
370
.10.1006/jsvi.1994.1180
9.
Ramesh
,
T. C.
, and
Ganesan
,
N.
,
1995
, “
Influence of Constrained Damping Layer on the Resonant Response of Orthotropic Cylindrical Shells
,”
J. Sound Vib.
,
185
, pp.
483
500
.10.1006/jsvi.1995.0394
10.
Hu
,
Y. C.
, and
Huang
,
S. C.
,
2000
, “
The Frequency Response and Damping Effect of Three-Layer Thin Shell With Viscoelastic Core
,”
Comput. Struct.
,
76
, pp.
577
591
.10.1016/S0045-7949(99)00182-0
11.
Wang
,
H. J.
, and
Chen
,
L. W.
,
2004
, “
Finite Element Dynamic Analysis of Orthotropic Cylindrical Shells With a Constrained Damping Layer
,”
Finite Elem. Anal. Design
,
40
, pp.
737
755
.10.1016/S0168-874X(03)00112-4
12.
Li
,
E. Q.
,
Li
,
D. K.
,
Tang
,
G. J.
, and
Lei
,
Y. J.
,
2008
, “
Dynamic Analysis of Constrained Layered Damping Cylindrical Shell
,”
Eng. Mech.
,
25
, pp.
6
11
(in Chinese).
13.
Cao
,
X. T.
,
Zhang
,
Z. Y.
, and
Hua
,
H. X.
,
2011
, “
Free Vibration of Circular Cylindrical Shell With Constrained Layer Damping
,”
Appl. Math. Mech.
,
32
, pp.
495
506
.10.1007/s10483-011-1433-7
14.
Farough
,
M.
, and
Ramin
,
S.
,
2012
, “
Linear and Nonlinear Vibration Analysis of Sandwich Cylindrical Shell With Constrained Viscoelastic Core Layer
,”
Int. J. Mech. Sci.
,
54
, pp.
156
171
.10.1016/j.ijmecsci.2011.10.006
15.
Chen
,
L. H.
, and
Huang
,
S. C.
,
1999
, “
Vibrations of a Cylindrical Shell With Partially Constrained Layer Damping (CLD) Treatment
,”
Int. J. Mech. Sci.
,
41
, pp.
1485
1498
.10.1016/S0020-7403(98)00102-7
16.
Li
,
E. Q.
,
Li
,
D. K.
,
Tang
,
G. J.
, and
Lei
,
Y. J.
,
2007
, “
Dynamic Analysis of Cylindrical Shell With Partially Covered Ring-Shape Constrained Layer Damping by the Transfer Function Method
,”
Chin. J. Aeronaut.
,
28
, pp.
1487
1493
(in Chinese).
17.
Sainsbury
,
M. G.
, and
Masti
,
R. S.
,
2007
, “
Vibration Damping of Cylindrical Shells Using Strain-Energy-Based Distribution of an Add-On Viscoelastic Treatment
,”
Finite Elem. Anal. Design
,
43
, pp.
175
192
.10.1016/j.finel.2006.09.003
18.
Fuller
,
C. R.
, and
Fahy
,
F. J.
,
1982
, “
Characteristics of Wave Propagation and Energy Distributions in Cylindrical Elastic Shells Filled With Fluid
,”
J. Sound Vib.
,
81
, pp.
501
518
.10.1016/0022-460X(82)90293-0
19.
Fuller
,
C. R.
,
1983
, “
The Input Mobility of an Infinite Circular Cylindrical Elastic Shell Filled With Fluid
,”
J. Sound Vib.
,
87
, pp.
409
427
.10.1016/0022-460X(83)90470-4
20.
Brevart
,
B. J.
, and
Fuller
,
C. R.
,
1993
, “
Effect of an Internal Flow on the Distribution of Vibrational Energy in an Infinite Fluid-Filled Thin Cylindrical Elastic Shell
,”
J. Sound Vib.
,
167
, pp.
149
163
.10.1006/jsvi.1993.1326
21.
Xu
,
M. B.
,
Zhang
,
X. M.
, and
Zhang
,
W. H.
,
1997
, “
Characteristics of Wave Propagation and Vibrational Power Flow in a Fluid-Filled Cylindrical Shell
,”
J. Vibr. Eng.,
10
, pp.
230
235
(in Chinese).
22.
Xu
,
M. B.
,
Zhang
,
X. M.
, and
Zhang
,
W. H.
,
1997
, “
The Vibrational Energy Flow in a Cylindrical Shell Filled With Fluid
,”
J. Huazhong Univ. Sci. Technol.
,
24
, pp.
85
87
(in Chinese).
23.
Xu
,
M. B.
, and
Zhang
,
X. M.
,
1998
, “
Vibration Power Flow in a Fluid-Filled Cylindrical Shell
,”
J. Sound Vib.
,
218
, pp.
587
598
.10.1006/jsvi.1998.1858
24.
Xu
,
M. B.
,
Zhang
,
X. M.
, and
Zhang
,
W. H.
,
1999
, “
Input Vibrational Power Flow and Its Transmission in a Fluid-Filled Shell
,”
Chin. J. Acoust.
,
24
, pp.
391
399
(in Chinese).
25.
Xu
,
M. B.
, and
Zhang
,
W. H.
,
2000
, “
Vibrational Power Flow Input and Transmission in a Circular Cylindrical Shell Filled With Fluid
,”
J. Sound Vib.
,
234
, pp.
387
403
.10.1006/jsvi.1999.2880
26.
Sorokin
,
S. V.
,
Nielsen
,
J. B.
, and
Olhlff
,
N.
,
2004
, “
Green's Matrix and the Boundary Integral Equation Method for the Analysis of Vibration and Energy Flow in Cylindrical Shells With and Without Internal Fluid Loading
,”
J. Sound Vib.
,
271
, pp.
815
847
.10.1016/S0022-460X(03)00755-7
27.
Yan
,
J.
,
Li
,
T. Y.
,
Liu
,
T. G.
, and
Liu
,
J. X.
,
2006
, “
Characteristics of the Vibrational Power Flow Propagation in a Submerged Periodic Ring-Stiffened Cylindrical Shell
,”
Appl. Acoust.
,
67
, pp.
550
569
.10.1016/j.apacoust.2005.08.006
28.
Yan
,
J.
,
Li
,
T. Y.
,
Liu
,
J. X.
, and
Zhu
,
X.
,
2008
, “
Input Power Flow in a Submerged Infinite Cylindrical Shell With Doubly Periodic Supports
,”
Appl. Acoust.
,
69
, pp.
681
690
.10.1016/j.apacoust.2007.02.011
29.
Yan
,
J.
,
Li
,
T. Y.
,
Liu
,
J. X.
, and
Zhu
,
X.
,
2007
, “
Power Flow Analysis of a Submerged Cylindrical Shell Coated by Viscoelastic Materials With Wave Propagation Approach
,”
J. Ship Mech.
,
11
, pp.
780
787
(in Chinese).
30.
Yan
,
J.
,
Li
,
F. C.
, and
Li
,
T. Y.
,
2007
, “
Vibrational Power Flow Analysis of a Submerged Viscoelastic Cylindrical Shell With Wave Propagation Approach
,”
J. Sound Vib.
,
303
, pp.
264
276
.10.1016/j.jsv.2007.01.014
31.
Yan
,
J.
,
2006
, “
Characteristics of Power Flow and Sound Radiation in Submerged Complex Cylindrical Shells
,” Ph.D. thesis, Huazhong University of Science and Technology, Wu Han, China (in Chinese).
32.
Zhang
,
J. J.
,
2010
, “
Vibrational Power Flow and Radiated Sound Power of Cylindrical Shell in Fluid With Different Theories
,” Ph.D. thesis, Huazhong University of Science and Technology, Wu Han, China (in Chinese).
33.
Wilhelm
,
F.
,
1973
,
Stresses in Shells
,
Springer-Verlag
,
New York
, pp.
204
215
.
34.
Stefan
,
M.
,
1998
,
The Mechanics of Vibrations of Cylindrical Shells
,
Elsevier Science
,
Amsterdam
, pp.
1
100
.
35.
Chen
,
L. H.
, and
Huang
,
S. C.
,
2001
, “
Vibration Attenuation of a Cylindrical Shell With Constrained Layer Damping Strips Treatment
,”
Comput. Struct.
,
79
, pp.
1355
1362
.10.1016/S0045-7949(01)00009-8
36.
He
,
Z. Y.
, and
Zhao
,
Y. F.
,
1981
,
Basic Theory of Acoustic
,
National Defense Industry
,
Beijing, China
, pp.
96
105
(in Chinese).
37.
He
,
Z. Y.
,
2001
,
Structural Vibration and Acoustic
,
Harbin Engineering University
,
Harbin, China
, pp.
67
144
(in Chinese).
38.
Zhang
,
X. M.
,
Liu
,
G. R.
, and
Lam
,
K. Y.
,
2001
, “
Coupled Vibration Analysis of Fluid-Filled Cylindrical Shells Using the Wave Propagation Approach
,”
Appl. Acoust.
,
62
, pp.
229
243
.10.1016/S0003-682X(00)00045-1
39.
Zhang
,
X. M.
,
2002
, “
Frequency Analysis of Submerged Cylindrical Shells With the Wave Propagation Approach
,”
Int. J. Mech. Sci.
,
44
, pp.
1259
1273
.10.1016/S0020-7403(02)00059-0
40.
Zhang
,
X. M.
,
2002
, “
Parametric Studies of Coupled Vibration of Cylindrical Pipes Conveying Fluid With the Wave Propagation Approach
,”
Comput. Struct.
,
80
, pp.
287
295
.10.1016/S0045-7949(02)00005-6
41.
Brazier-Smith
,
P. R.
, and
Scott
,
J. F. M.
,
1991
, “
On the Determination of the Roots of Dispersion Equations by Use of Winding Number Integrals
,”
J. Sound Vib.
,
145
, pp.
503
510
.10.1016/0022-460X(91)90119-5
42.
Ivansson
,
S.
, and
Karasalo
,
I.
,
1993
, “
Computation of Modal Wavenumbers Using an Adaptive Wingding-Number Integral Method With Error Control
,”
J. Sound Vib.
,
161
, pp.
173
180
.10.1016/0022-460X(93)90410-D
43.
Scott
,
J. F. M.
,
1988
, “
The Free Modes of Propagation of an Infinite Fluid-Loaded Thin Cylindrical Shell
,”
J. Sound Vib.
,
125
, pp.
241
280
.10.1016/0022-460X(88)90282-9
You do not currently have access to this content.