A finite volume time domain method is developed for in-plane vibration based on mixed triangular and quadrilateral elements. Here the linear quadrilateral element shape function is introduced instead of the constant one to improve the accuracy of the present method. The improvement is validated to be vital to avoid violent numerical oscillation of displacement fields when applying to the point–source problem. The present method is proposed to analyze the transient responses and the natural characteristics of several in-plane problems. The results show good agreement with the commercial code solutions and the analytical solutions. In order to demonstrate the capability of the present method for multiexcitation problems, an example with sources containing different frequencies and phase angles, concentrated and uniform distributions, and impulse and continuous forms is analyzed.

References

References
1.
Leissa
,
A. W.
,
1973
, “
The Free Vibration of Rectangular Plates
,”
J. Sound Vib.
,
31
, pp.
257
293
.10.1016/S0022-460X(73)80371-2
2.
Leissa
,
A. W.
,
1993
,
Vibration of Plates
,
Ohio State University, Acoustical Society of America
,
Columbus, OH
.
3.
Lyon
,
R. H.
,
1985
, “
In-Plane Contribution to Structural Noise Transmission
,”
Noise Control Eng. J.
,
26
, pp.
22
27
.10.3397/1.2827659
4.
Bardell
,
N. S.
,
Langley
,
R. S.
, and
Dunsdon
,
J. M.
,
1996
, “
On the Free In-Plane Vibration of Isotropic Plates
,”
J. Sound Vib.
,
191
, pp.
459
467
.10.1006/jsvi.1996.0134
5.
Farag
,
N. H.
, and
Pan
,
J.
,
1999
, “
Modal Characteristics of In-Plane Vibration of Rectangular Plates
,”
J. Acoust. Soc. Am.
,
105
, pp.
3295
3310
.10.1121/1.424658
6.
Deshpande
,
M.
, and
Mote
,
C. D.
, Jr.
,
2003
, “
In-Plane Vibrations of a Thin Rotating Disk
,”
ASME J. Vib. Acoust.
,
125
, pp.
68
72
.10.1115/1.1522419
7.
Du
,
J. T.
,
Li
,
W. L.
,
Jin
,
G. Y.
,
Yang
,
T. J.
, and
Liu
,
Z. G.
,
2007
, “
An Analytical Method for the In-Plane Vibration Analysis of Rectangular Plates With Elastically Restrained Edges
,”
J. Sound Vib.
,
306
, pp.
908
927
.10.1016/j.jsv.2007.06.011
8.
Du
,
J. T.
,
Liu
,
Z. G.
,
Li
,
W. L.
,
Zhang
,
X. F.
, and
Li
,
W. Y.
,
2010
, “
Free In-Plane Vibration Analysis of Rectangular Plates With Elastically Point-Supported Edges
,”
ASME J. Vib. Acoust.
,
132
(3), p.
0310021
.10.1115/1.4000777
9.
Singh
,
K.
, and
Singh
,
B. P.
,
1985
, “
Finite Element Method for In-Plane Vibrations of Rotating Timoshenko Rings and Sectors
,”
Int. J. Numer. Methods Eng.
,
21
, pp.
1521
1533
.10.1002/nme.1620210812
10.
Yang
,
F.
,
Sedaghati
,
R.
, and
Esmailzadeh
,
E.
,
2008
, “
Free In-Plane Vibration of General Curved Beams Using Finite Element Method
,”
J. Sound Vib.
,
318
, pp.
850
867
.10.1016/j.jsv.2008.04.041
11.
Fryer
,
Y. D.
,
Bailey
,
C.
,
Cross
,
M.
, and
Lai
,
C.-H.
,
1991
, “
A Control Volume Procedure for Solving the Elastic Stress-Strain Equations on an Unstructured Mesh
,”
Appl. Math. Model.
,
15
, pp.
639
645
.10.1016/S0307-904X(09)81010-X
12.
Demirdîzíc
,
I.
, and
Muzaferija
,
S.
,
1994
, “
Finite Volume Method for Stress Analysis in Complex Domains
,”
Int. J. Numer. Methods Eng.
,
37
, pp.
3751
3766
.10.1002/nme.1620372110
13.
Demirdîzíc
,
I.
,
Muzaferija
,
S.
, and
Períc
,
M.
,
1997
, “
Benchmark Solutions of Some Structural Analysis Problems Using Finite-Volume Method and Multigrid Acceleration
,”
Int. J. Numer. Methods Eng.
,
40
, pp.
1893
1908
.10.1002/(SICI)1097-0207(19970530)40:10<1893::AID-NME146>3.0.CO;2-L
14.
Oñate
,
E.
,
Cervera
,
M.
, and
Zienkiewicz
,
O. C.
,
1994
, “
A Finite Volume Format for Structural Mechanics
,”
Int. J. Numer. Methods Eng.
,
37
, pp.
181
201
.10.1002/nme.1620370202
15.
Bailey
,
C.
, and
Cross
,
M.
,
1995
, “
A Finite Volume Procedure to Solve Elastic Solid Mechanics Problems in Three Dimensions on an Unstructured Mesh
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
1756
1776
.10.1002/nme.1620381010
16.
Taylor
,
G. A.
,
Bailey
,
C.
, and
Cross
,
M.
,
1995
, “
Solution of the Elastic/Visco-Plastic Constitutive Equations: A Finite Volume Approach
,”
Appl. Math. Model.
,
19
, pp.
746
760
.10.1016/0307-904X(95)00093-Y
17.
Hattel
,
J. H.
, and
Hansen
,
P. N.
,
1995
, “
A Control Volume-Based Finite Difference Method for Solving the Equilibrium Equations in Terms of Displacements
,”
Appl. Math. Model.
,
19
, pp.
210
243
.10.1016/0307-904X(94)00015-X
18.
Wheel
,
M. A.
,
2008
, “
A Control Volume-Based Finite Element Method for Plane Micropolar Elasticity
,”
Int. J. Numer. Methods Eng.
,
75
, pp.
992
1006
.10.1002/nme.2293
19.
Demirdîzíc
,
I.
, and
Martinovíc
,
D.
,
1993
, “
Finite Volume Method for Thermo-Elasto-Plastic Stress Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
109
, pp.
331
349
.10.1016/0045-7825(93)90085-C
20.
Wheel
,
M. A.
,
1996
, “
A Geometrically Versatile Finite Volume Formulation for Plane Elastostatic Stress Analysis
,”
J. Strain Anal. Eng. Design
,
31
, pp.
111
116
.10.1243/03093247V312111
21.
Wenke
,
P.
, and
Wheel
,
M. A.
,
2003
, “
A Finite Volume Method for Solid Mechanics Incorporating Rotational Degrees of Freedom
,”
Comput. Struct.
,
81
, pp.
321
329
.10.1016/S0045-7949(02)00439-X
22.
Wheel
,
M. A.
,
1997
, “
A Finite Volume Method for Analysing the Bending Deformation of Thick and Thin Plates
,”
Comput. Methods Appl. Mech. Eng.
,
147
, pp.
199
208
.10.1016/S0045-7825(96)00003-5
23.
Wheel
,
M. A.
,
1999
, “
A Mixed Finite Volume Formulation for Determining the Small Strain Deformation of Incompressible Materials
,”
Int. J. Numer. Methods Eng.
,
44
, pp.
1843
1861
.10.1002/(SICI)1097-0207(19990430)44:12<1843::AID-NME566>3.0.CO;2-Y
24.
Fallah
,
N.
,
2004
, “
A Cell Vertex and Cell Centered Finite Volume Method for Plate Bending Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
193
, pp.
3457
3470
.10.1016/j.cma.2003.08.005
25.
Slone
,
A. K.
,
Bailey
,
C.
, and
Cross
,
M.
,
2003
, “
Dynamic Solid Mechanics Using Finite Volume Methods
,”
Appl. Math. Model.
,
27
, pp.
69
87
.10.1016/S0307-904X(02)00060-4
26.
Slone
,
A. K.
,
Pericleous
,
K.
,
Bailey
,
C.
, and
Cross
,
M.
,
2002
, “
Dynamic Fluid-Structure Interaction Using Finite Volume Unstructured Mesh Procedures
,”
Comput. Struct.
,
80
, pp.
371
390
.10.1016/S0045-7949(01)00177-8
27.
Slone
,
A. K.
,
Pericleous
,
K.
,
Bailey
,
C.
,
Cross
,
M.
, and
Bennett
,
C.
,
2004
, “
A Finite Volume Unstructured Mesh Approach to Dynamic Fluid-Structure Interaction: An Assessment of the Challenge of Predicting the Onset of Flutter
,”
Appl. Math. Model.
,
28
, pp.
211
239
.10.1016/S0307-904X(03)00142-2
28.
Xia
,
G. H.
, and
Lin
,
C. L.
,
2008
, “
An Unstructured Finite Volume Approach for Structural Dynamics in Response to Fluid Motions
,”
Comput. Struct.
,
86
, pp.
684
701
.10.1016/j.compstruc.2007.07.008
29.
Liu
,
T. L.
,
Liu
,
K. S.
, and
Zhang
,
J. X.
,
2004
, “
Unstructured Grid Method for Stress Wave Propagation in Elastic Media
,”
Comput. Methods Appl. Mech. Eng.
,
193
, pp.
2427
2452
.10.1016/j.cma.2004.01.030
30.
Wang
,
X. C.
,
2003
,
Finite Element Method, Tsinghua University Press
,
Beijing.
31.
Zhu
,
M. G.
,
Ming
,
P. J.
,
Xuan
,
L. K.
, and
Zhang
,
W. P.
,
2012
, “
An Unstructured Finite Volume Time Domain Method for Structural Dynamics
,”
Appl. Math. Model.
,
36
, pp.
183
192
.10.1016/j.apm.2011.05.053
You do not currently have access to this content.