A measurement study is conducted to investigate how changes in temperature, dynamic strain amplitude, and magnetic field strength influence the behavior of a magnetosensitive material. During the measurements seven temperatures, four magnetic fields, and three dynamic strain amplitudes are used over a 200 to 800 Hz frequency range. The results indicate a decrease in shear modulus magnitude as the dynamic strain amplitude is increased. As the frequency and magnetic field strength increases the magnitude increases. However, the measurements indicate that the temperature is the most influential of the parameters as the material stiffens significantly when the temperature reaches the transition phase. Understanding the temperature dependence increases the knowledge of magnetosensitive materials.

References

References
1.
Ginder
,
J.
,
Nichols
,
M.
,
Elie
,
L.
, and
Tardiff
,
J.
,
1999
, “
Magnetorheological Elastomers: Properties and Applications
,”
Smart Materials Technologies
,
M.
Wuttig
, ed.,
SPIE
,
Newport Beach, CA
, pp.
131
138
.
2.
Blom
,
P.
, and
Kari
,
L.
,
2005
, “
Magneto-Sensitive Rubber in a Noise Reduction Context—Exploring the Potential
,”
Plast. Rubber Comp.
,
34
, pp.
365
371
.10.1179/174328905X59692
3.
Rabinow
,
J.
,
1948
, “
The Magnetic Field Clutch
,”
AIEE Trans.
,
67
, pp.
1308
1315
.
4.
Winslow
,
M. W.
,
1949
, “
Induced Fibration of Suspensions
,”
J. Appl. Phys.
,
20
, pp.
1137
1140
.10.1063/1.1698285
5.
Jolly
,
M. R.
,
Carlson
,
J. D.
, and
Munoz
,
B. C.
,
1996
, “
A Model of Magnetorheological Materials
,”
Smart Mater. Struct.
,
5
(
5
), pp.
607
614
.10.1088/0964-1726/5/5/009
6.
Jolly
,
M.
,
Carlson
,
J.
,
Muoz
,
B.
, and
Bullions
,
T.
,
1996
, “
The Magnetoviscoelastic Response of Elastomer Composites Consisting of Ferrous Particles Embedded in a Polymer Matrix
,”
J. Intell. Mater. Syst. Struct.
,
7
, pp.
613
622
.10.1177/1045389X9600700601
7.
Davis
,
L. C.
,
1999
, “
Model of Magnetorheological Elastomers
,”
J. Appl. Phys.
,
85
(
6
), pp.
3348
3351
.10.1063/1.369682
8.
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2003
, “
Magnetoelastic Modelling of Elastomers
,”
Eur. J. Mech. A-Solid
,
22
, pp.
497
507
.10.1016/S0997-7538(03)00067-6
9.
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2004
, “
Nonlinear Magnetoelastic Deformations
,”
Q. J. Mech Appl. Math
,
57
(
4
), pp.
599
622
.10.1093/qjmam/57.4.599
10.
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2005
, “
Some Problems in Nonlinear Magnetoelasticity
,”
Z. Angew. Math. Phys.
,
56
(
4
), pp.
718
745
.10.1007/s00033-004-4066-z
11.
Shen
,
Y.
,
Golnaraghi
,
M. F.
, and
Heppler
,
G. R.
,
2004
, “
Experimental Research and Modeling of Magnetorheological Elastomers
,”
J. Intell. Mater. Syst. Struct.
,
15
, pp.
27
35
.10.1177/1045389X04039264
12.
Gong
,
X.
,
Zhang
,
X.
, and
Zhang
,
P.
,
2005
, “
Study of Mechanical Behavior and Microstructure of Magnetorheological Elastomers
,”
Int. J. Mod. Phys. B
,
19
(
7–9
), pp.
1304
1310
.10.1142/S0217979205030220
13.
Chen
,
L.
,
Gong
,
X.
, and
Li
,
W.
,
2007
, “
Microstructures and Viscoelastic Properties of Anisotropic Magnetorheological Elastomers
,”
Smart Mater. Struct.
,
16
, pp.
2645
2650
.10.1088/0964-1726/16/6/069
14.
Lokander
,
M.
, and
Stenberg
,
B.
,
2003
, “
Performance of Isotropic Magnetorheological Rubber Materials
,”
Polym. Test.
,
22
(
3
), pp.
245
251
.10.1016/S0142-9418(02)00043-0
15.
Chen
,
L.
,
Gong
,
X. L.
, and
Li
,
W. H.
,
2008
, “
Effect of Carbon Black on the Mechanical Performances of Magnetorheological Elastomers
,”
Polym. Test.
,
27
, pp.
340
345
.10.1016/j.polymertesting.2007.12.003
16.
Bellan
,
C.
, and
Bossis
,
G.
,
2002
, “
Field Dependence of Viscoelastic Properties of MR Elastomers
,”
Int. J. Mod. Phys. B
,
16
(
17–18
), pp.
2447
2453
.10.1142/S0217979202012499
17.
Major
,
Z.
,
Schrittesser
,
B.
, and
Filipcsei
,
G.
,
2009
, “
Characterisation of Dynamic Mechanical Behaviour of Magnetoelastomers
,”
Plast. Rubber Comp.
,
38
(
8
), pp.
313
320
.10.1179/146580109X12473409436986
18.
Fletcher
,
W.
, and
Gent
,
A.
,
1953
, “
Non-Linearity in the Dynamic Properties of Vulcanized Rubber Compounds
,”
Trans. Inst. Rubber Ind.
,
29
, pp.
266
280
.
19.
Blom
,
P.
, and
Kari
,
L.
,
2005
, “
Amplitude and Frequency Dependence of Magneto-Sensitive Rubber in a Wide Frequency Range
,”
Polym. Test.
,
24
(
5
), pp.
656
662
.10.1016/j.polymertesting.2005.04.001
20.
Zhou
,
G. Y.
,
2003
, “
Shear Properties of a Magnetorheological Elastomer
,”
Smart Mater. Struct.
,
12
, pp.
139
146
.10.1088/0964-1726/12/1/316
21.
Koo
,
J.
,
Khan
,
F.
,
Jang
,
D.
, and
Jung
,
H.
,
2010
, “
Dynamic Characterization and Modeling of Magneto-Rheological Elastomers Under Compressive Loadings
,”
Smart Mater. Struct.
,
19
, p.
117002
.10.1088/0964-1726/19/11/117002
22.
Lejon
,
J.
, and
Kari
,
L.
,
2009
, “
Preload, Frequency, Vibrational Amplitude and Magnetic Field Strength Dependence of Magnetosensitive Rubber
,”
Plast. Rubber Comp.
,
38
(
8
), pp.
321
326
.10.1179/146580109X12473409436823
23.
Ferry
,
J. D.
,
1980
,
Viscoelastic Properties of Polymers
,
3rd ed.
,
John Wiley and Sons
,
New York
.
24.
Zschunke
,
F.
,
Rivas
,
R.
, and
Brunn
,
P.
,
2005
, “
Temperature Behavior of Magnetorheological Fluids
,”
Appl. Rheol.
,
15
, pp.
116
121
.10.3933/ApplRheol-15-116
25.
Gordaninejad
,
F.
,
Sahin
,
H.
, and
Wang
,
X.
,
2009
, “
Temperature Dependence of Magneto-Rheological Materials
,”
J. Intel. Mat. Syst. Str.
,
20
, pp.
2215
2222
.10.1177/1045389X09351608
26.
Zhang
,
W.
,
Gong
,
X. L.
,
Xuan
,
S. H.
, and
Jiang
,
W. Q.
,
2011
, “
Temperature-Dependent Mechanical Properties and Model of Magnetorheological Elastomers
,”
Ind. Eng. Chem. Res.
,
50
, pp.
6704
6712
.10.1021/ie200386x
27.
Kari
,
L.
,
2001
, “
Dynamic Transfer Stiffness Measurements of Vibration Isolators in the Audible Frequency Range
,”
Noise Control Eng. J.
,
49
, pp.
88
102
.10.3397/1.2839644
You do not currently have access to this content.