A Maxwell damper with a damper spring in series with a viscous dashpot is a more physical model than a viscous dashpot because the Maxwell damper models the elasticity of the connecting links of the viscous dashpot. The system of a main spring in parallel with a Maxwell damper is known as the standard linear solid (SLS) in viscoelasticity. The response of this SLS attached to a mass for standard initial value problems: displacement (nonzero displacement with zero velocity) and velocity (zero displacement with nonzero velocity) have been analyzed a few times in the literature. However, different authors present different conclusions about the importance of modeling the damper spring. None of these authors have explored the influence of the initial internal state of the damper spring. Here it is shown that the initial internal state of the damper spring can significantly influence the response for both displacement and velocity initial value problems.

References

References
1.
Crandall
,
S. H.
,
1970
, “
The Role of Damping in Vibration Theory
,”
J. Sound Vib.
,
11
, pp.
3
18
.10.1016/S0022-460X(70)80105-5
2.
Christensen
,
R. M.
,
1971
,
Theory of Viscoelasticity
,
Academic Press
,
New York
.
3.
Flugge
,
W.
,
1975
,
Viscoelasticity
,
Springer-Verlag
,
Berlin
.
4.
Gallagher
,
J.
, and
Volterra
,
E.
,
1952
, “
A Mathematical Analysis of the Relaxation Type of Vehicle Suspension
,”
ASME J. Appl. Mech.
,
74
, pp.
389
396
.
5.
Yamakawa
,
I.
,
1961
, “
On the Free Vibration and the Transient State of One-Degree-of-Freedom System With Elastically Supported Damper
,”
Bull. JSME
4
, pp.
641
644
.10.1299/jsme1958.4.641
6.
Ruzicka
,
J. E.
,
1967
, “
Resonance Characteristics of Unidirectional Viscous and Coulomb-Damped Vibrational Isolation Systems
,”
ASME J. Eng. Ind.
,
89
, pp.
729
740
.10.1115/1.3610145
7.
Derby
,
T. F.
, and
Calcaterra
,
P. C.
,
1970
, “
Response and Optimization of an Isolator With Relaxation Type Damping
,”
Shock Vib. Bull.
,
40
, pp.
203
216
.
8.
Muravyov
,
A.
, and
Hutton
,
S. G.
,
1998
, “
Free Vibration Response Characteristic of a Simple Elasto-Hereditary System
,”
ASME, J. Vib. Acoust.
,
120
, pp.
628
632
.10.1115/1.2893873
9.
Adhikari
S.
,
2002
, “
Dynamics of Nonviscously Damped Linear Systems
,”
J. Eng. Mech.
,
128
, pp.
328
339
.10.1061/(ASCE)0733-9399(2002)128:3(328)
10.
Muller
,
P.
,
2005
, “
Are the Eigensolutions of a 1-D.O.F. System With Viscoelastic Damping Oscillatory or Not?
,”
J. Sound Vib.
,
285
, pp.
501
509
.10.1016/j.jsv.2004.09.007
11.
Brennan
,
M. J.
,
Carrella
,
A.
,
Walters
,
T. P.
, and
Lopes
, V
.
,
Jr
.,
2008
, “
On the Dynamic Behaviour of a Mass Supported by a Parallel Combination of a Spring and an Elastically Connected Damper
,”
J. Sound Vib.
,
309
, pp.
823
837
.10.1016/j.jsv.2007.07.074
12.
Dimarogonas
,
A. D.
, and
Haddad
,
S.
,
1992
,
Vibrations for Engineers
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
13.
Shimizu
,
K.
,
Yamada
,
T.
,
Tagami
,
J.
, and
Kurino
,
H.
,
2004
, “
Vibration Tests of Actual Buildings With Semi-Active Switching Oil Damper
,”
Proceedings of the 13th World Conference on Earthquake Engineering
,
Vancouver, BC, Canada
, August 1–6, Paper No. 153.
14.
Suciu
,
C. V.
,
Tobiishi
,
T.
, and
Mouri
,
R.
,
2012
, “
Modeling and Simulation of a Vehicle Suspension With Variable Damping Versus the Excitation Frequency
,”
J. Telecommun. Inf. Technol.
,
1
, pp.
83
89
.10.1109/3PGCIC.2011.75
15.
Makris
,
N.
,
Dargush
,
G. F.
, and
Constantinou
,
M. C.
,
1993
, “
Dynamic Analysis of Generalized Viscoelastic Fluids
,”
ASCE J. Struct. Eng.
,
119
, pp.
1663
1679
.10.1061/(ASCE)0733-9445(1993)119:11(3310)
16.
Rossikhin
,
Y. A.
,
Shitikova
,
M. V.
, and
Shcheglova
,
T.
,
2009
, “
Forced Vibrations of a Nonlinear Oscillator With Weak Fractional Damping
,”
J. Mech. Mater. Struct.
,
4
, pp.
1619
1636
.10.2140/jomms.2009.4.1619
You do not currently have access to this content.