Wave based method (WBM) is presented to analysis the free vibration characteristics of cylindrical shells with nonuniform stiffener distributions for arbitrary boundary conditions. The stiffeners are treated as discrete elements. The equations of motion of annular circular plate are used to describe the motion of stiffeners. Instead of expanding the dynamic field variables in terms of polynomial approximation in element based method (finite element method etc), the ring-stiffened cylindrical shell is divided into several substructures and the dynamic field variables in each substructure are expressed as wave function expansions. Boundary conditions and continuity conditions between adjacent substructures are used to form the final matrix to be solved. Natural frequencies of cylindrical shells with uniform rings spacing and eccentricity distributions for shear diaphragm-shear diaphragm boundary conditions have been calculated by WBM model which shows good agreement with the experimental results and the analytical results of other researchers. Natural frequencies of cylindrical shells with other boundary conditions have also been calculated and the results are compared with the finite element method which also shows good agreement. Effects of the nonuniform rings spacing and nonuniform eccentricity and effects of boundary conditions on the fundamental frequencies and the beam mode frequencies have been studied. Different stiffener distributions are needed to increase the fundamental frequencies and beam mode frequencies for different boundary conditions. WBM model presented in this paper can be recognized as a semianalytical and seminumerical method which is quite useful in analyzing the vibration characteristics of cylindrical shells with nonuniform rings spacing and eccentricity distributions.

References

References
1.
Leissa
,
A. W.
,
1973
, “
Vibration of Shell
,”
NASA
,
Ohio
.
2.
Flügge
,
W.
,
1973
,
Stress in Shells
,
Springer
,
Berlin
.
3.
Arnold
,
R. N.
,
Warburton
,
G. B.
,
1949
, “
Flexural Vibrations of the Walls of Thin Cylindrical Shells Having Freely Supported Ends
,”
Proc. R. Soc. London, Ser. A.
,
197
(
1049
), pp.
238
256
.10.1098/rspa.1949.0061
4.
Sharma
,
C. B.
,
1974
, “
Calculation of Natural Frequencies of Fixed-Free Circular Cylindrical Shells
,”
J. Sound Vib.
,
35
(
1
), pp.
55
76
.10.1016/0022-460X(74)90038-8
5.
Arnold
,
R. N.
, and
Warburton
,
G. B.
,
1953
, “
The Flexural Vibrations of Thin Cylinders
,”
Proc. Inst. Mech. Eng., Part A.
,
167
(
1
), pp.
62
80
.10.1243/PIME_PROC_1953_167_014_02
6.
Forsberg
,
K.
,
1963
, “
Influence of Boundary Conditions on the Modal Characteristics of Thin Cylindrical Shells
,”
J. Acoust. Soc. Am.
,
35
(
11
), pp.
1898
1899
.10.1121/1.2142740
7.
Forsberg
,
K.
,
1969
, “
Axisymmetric and Beam-Type Vibrations of Thin Cylindrical Shells
,”
AIAA J.
,
7
(
2
), pp.
221
227
.10.2514/3.5078
8.
Warburton
,
G. B.
,
1965
, “
Vibrations of Thin Cylindrical Shells
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
7
(
4
), pp.
399
407
.10.1243/JMES_JOUR_1965_007_062_02
9.
Warburton
,
G. B.
, and
Higgs
,
J.
,
1970
, “
Natural Frequencies of Thin Cantilever Cylindrical Shells
,”
J. Sound Vib.
,
11
(
3
), pp.
335
338
.10.1016/S0022-460X(70)80037-2
10.
Goldman
,
R. L.
,
1974
, “
Mode Shapes and Frequencies of Clamped-Clamped Cylindrical Shells
,”
AIAA J.
,
12
(
12
), pp.
1755
1756
.10.2514/3.49599
11.
Hoppmann
,
W. H.
,
1958
, “
Some Characteristics of the Flexural Vibrations of Orthogonally Stiffened Cylindrical Shells
,”
J. Acoust. Soc. Am.
,
29
(
6
), pp.
772
772
.10.1121/1.1918815
12.
Everstine
,
G. C.
,
1970
, “
Ring-Stiffened Cylinder
,”
Proceeding of NSRDC-NASTRAN Colloquium
,
Washington, DC
, January 12–13.
13.
Mustafa
,
B.
, and
Ali
,
R.
,
1989
, “
An Energy Method for Free Vibration Analysis of Stiffened Circular Cylindrical Shells
,”
Comput. Struct.
,
32
(
2
), pp.
335
363
.10.1016/0045-7949(89)90047-3
14.
Galletly
,
G. D.
,
1954
, “
On the In Vacuo Vibrations of Simply Supported Ring-Stiffened Cylindrical Shell
,”
Proceedings of the Second US National Congress of Applied Mechanics
,
Ann Arbor, MI
, June 14–18.
15.
Sewall
,
J. L.
,
Clary
,
R. R.
, and
Leadbetter
,
S. A.
,
1964
, “
An Experimental and Analytical Vibration Study of Ring-Stiffened Cylindrical Shell Structure With Various Support Conditions
,” Report No. NASA TN D-2398.
16.
Sewall
,
J. L.
, and
Naumann
,
E. C.
,
1968
, “
An Experimental and Analytical Vibration Study of Thin Cylindrical Shells With and Without Longitudinal Stiffeners
,” Report No. NASA TN D-4705.
17.
Caresta
,
M.
, and
Kessissoglou
,
N. J.
,
2009
, “
Structural and Acoustic Responses of a Fluid-Loaded Cylindrical Hull With Structural Discontinuities
,”
Appl. Acoust.
,
70
(
7
), pp.
954
963
.10.1016/j.apacoust.2008.11.004
18.
Caresta
,
M.
, and
Kessissoglou
,
N. J.
,
2011
, “
Reduction of Hull-Radiated Noise Using Vibroacoustic Optimization of the Propulsion System
,”
J. Ship. Res.
,
55
(
3
), pp.
149
162
.
19.
Wah
,
Thein
, and
Hu
,
William, C. L.
,
1968
, “
Vibration Analysis of Stiffened Cylinders Including Inter-Ring Motion
,”
J. Acoust. Soc. Am.
,
43
(
5
), pp.
1005
1016
.10.1121/1.1910933
20.
Basdekas
,
N. L.
, and
Chi
,
M.
,
1971
, “
Response of Oddly Stiffened Circular Cylindrical Shell
,”
J. Sound Vib.
,
17
(
2
), pp.
187
206
.10.1016/0022-460X(71)90454-8
21.
Hodges
,
C. H.
,
Power
,
J.
, and
Woodhouse
,
J.
,
1985
, “
The Low Frequency Vibration of a Ribbed Cylinder, Part 1: Theory
,”
J. Sound Vib.
,
101
(
2
), pp.
219
235
.10.1016/S0022-460X(85)81217-7
22.
Hodges
,
C. H.
,
Power
,
J.
, and
Woodhouse
,
J.
,
1985
, “
The Low Frequency Vibration of a Ribbed Cylinder—Part 2: Observations and Interpretation
,”
J. Sound Vib.
,
101
(
2
), pp.
237
256
.10.1016/S0022-460X(85)81218-9
23.
Brillouin
,
L.
,
1946
,
Wave Propagation in Periodic Structures
,
McGraw-Hill
,
New York
.
24.
Li
,
X. B.
,
2006
, “
A New Approach for Free Vibration Analysis of Thin Circular Cylindrical Shell
,”
J. Sound Vib.
,
296
(
1–2
), pp.
91
98
.10.1016/j.jsv.2006.01.065
25.
Pan
,
Z.
,
Li
,
X. B.
, and
Ma
,
J. J.
,
2008
, “
A Study on Free Vibration of a Ring-Stiffened Thin Circular Cylindrical Shell With Arbitrary Boundary Conditions
,”
J. Sound Vib.
,
314
(
1–2
), pp.
330
342
.10.1016/j.jsv.2008.01.008
26.
Li
,
X. B.
,
2008
, “
Study on Free Vibration Analysis of Circular Cylindrical Shells Using Wave Propagation
,”
J Sound Vib.
,
311
(
3–5
), pp.
667
682
.10.1016/j.jsv.2007.09.023
27.
Gan
,
L.
,
Li
,
X. B.
, and
Zhang
,
Z.
,
2009
, “
Free Vibration Analysis of Ring-Stiffened Cylindrical Shells Using Wave Propagation Approach
,”
J. Sound Vib.
,
326
(
3–5
), pp.
633
646
.10.1016/j.jsv.2009.05.001
28.
Jafari
,
A. A.
, and
Bagheri
,
M.
,
2006
, “
Free Vibration of Non-Uniformly Ring Stiffened Cylindrical Shells Using Analytical, Experimental and Numerical Methods
,”
Thin. Walled Struct.
,
44
(
1
), pp.
82
90
.10.1016/j.tws.2005.08.008
29.
Desmet
,
W.
,
1998
, “
A Wave Based Prediction Technique for Coupled Vibro-Acoustic Analysis
,” Ph.D. thesis, K.U., Leuven, Belgium.
30.
Desmet
,
W.
,
van Hal
,
B.
,
Sas
,
P.
, and
Vandepitte
,
D.
,
2002
, “
A Computationally Efficient Prediction Technique for the Steady-State Dynamic Analysis of Coupled Vibro-Acoustic Systems
,”
Adv. Eng. Software
,
33
(
7–10
), pp.
527
540
.10.1016/S0965-9978(02)00062-5
31.
Pluymers
,
B.
,
Desmet
,
W.
,
Vandepitte
,
D.
, and
Sas
,
P.
,
2004
, “
Application of an Efficient Wave-Based Prediction Technique for the Analysis of Vibro-Acoustic Radiation Problems
,”
Comput. Appl. Math.
,
168
(
1–2
), pp.
353
364
.10.1016/j.cam.2003.05.020
32.
Vanmaele
,
C.
,
Vandepitte
,
D.
, and
Desmet
,
W.
,
2009
, “
An Efficient Wave Based Prediction Technique for Dynamic Plate Bending Problems With Corner Stress Singularities
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
30–32
), pp.
2227
2245
.10.1016/j.cma.2009.01.015
33.
Tso
,
Y. K.
, and
Hansen
,
C. H.
,
1995
, “
Wave Propagation Through Cylinder/Plate Junctions
,”
J. Sound Vib.
,
186
(
3
), pp.
447
461
.10.1006/jsvi.1995.0460
You do not currently have access to this content.