This paper investigates the dynamic response of the cracked and flexible connecting rod in a slider-crank mechanism. Using Euler–Bernoulli beam theory to model the connecting rod without a crack, the governing equation and boundary conditions of the rod's transverse vibration are derived through Hamilton's principle. The moving boundary constraint of the joint between the connecting rod and the slider is considered. After transforming variables and applying the Galerkin method, the governing equation without a crack is reduced to a time-dependent differential equation. After this, the stiffness without a crack is replaced by the stiffness with a crack in the equation. Then, the Runge–Kutta numerical method is applied to solve the transient amplitude of the cracked connecting rod. In addition, the breathing crack model is applied to discuss the behavior of vibration. The influence of cracks with different crack depths on natural frequencies and amplitudes is also discussed. The results of the proposed method agree with the experimental and numerical results available in the literature.

References

References
1.
Lowen
,
G. G.
, and
Jandrasits
,
W. G.
,
1972
, “
Survey of Investigations Into the Dynamic Behavior of Mechanisms Containing Links With Distributed Mass and Elasticity
,”
Mech. Mach. Theory
,
7
(
1
), pp.
3
17
.10.1016/0094-114X(72)90012-2
2.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Oakberg
,
R. G.
,
1972
, “
A General Method for Kineto-Elastodynamic Analysis and Synthesis of Mechanisms
,”
J. Eng. Ind.
,
94
(
4
), pp.
1193
1205
.10.1115/1.3428335
3.
Viscomi
,
B. V.
, and
Ayre
,
R. S.
,
1971
, “
Nonlinear Dynamic Response of Elastic Slider-Crank Mechanism
,”
J. Eng. Ind.
,
93
(
1
), pp.
251
262
.10.1115/1.3427883
4.
Sadler
,
J. P.
, and
Sandor
,
G. N.
,
1973
, “
A Lumped Parameter Approach to Vibration and Stress Analysis of Elastic Linkages
,”
J. Eng. Ind.
,
95
(
2
), pp.
549
557
.10.1115/1.3438189
5.
Jou
,
C.-H.
,
1992
, “
Dynamic Stability of a High-Speed Slider-Crank Mechanism With a Flexible Connecting Rod
,” M.S. thesis, Chung Yuan Christian University, Taiwan.
6.
Fung
,
R.-F.
,
1996
, “
Dynamic Analysis of the Flexible Connecting Rod of a Slider-Crank Mechanism
,”
ASME J. Vibr. Acoust.
,
118
(
4
), pp.
687
689
.10.1115/1.2888353
7.
Fung
,
R.-F.
,
1997
, “
Dynamic Responses of the Flexible Connecting Rod of a Slider-Crank Mechanism With Time-Dependent Boundary Effect
,”
Comput. Struct.
,
63
(
1
), pp.
79
90
.10.1016/S0045-7949(96)00333-1
8.
Irwin
,
G. R.
,
1957
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
ASME J. Appl. Mech.
,
24
(
3
), pp.
361
364
.
9.
Rice
,
J. R.
, and
Levy
,
N.
,
1972
, “
The Part-Through Surface Crack in an Elastic Plate
,”
ASME J. Appl. Mech.
,
39
(
1
), pp.
185
194
.10.1115/1.3422609
10.
Dimarogonas
,
A. D.
,
1976
,
Vibration Engineering
,
West Publishing Co.
,
St. Paul, MN
.
11.
Dimarogonas
,
A. D.
, and
Paipetis
,
S. A.
,
1983
,
Analytical Methods in Rotor Dynamics
,
Elsevier Applied Science
,
London
, pp.
144
193
.
12.
Dimarogonas
,
A. D.
, and
Massouros
,
G.
,
1981
, “
Torsional Vibration of a Shaft With a Circumferential Crack
,”
Eng. Fract. Mech.
,
15
(
3–4
), pp.
439
444
.10.1016/0013-7944(81)90069-2
13.
Rubio
,
L.
, and
Fernández-Sáez
,
J.
,
2010
, “
A Note on the Use of Approximate Solutions for the Bending Vibrations of Simply Supported Cracked Beams
,”
ASME J. Vibr. Acoust.
,
132
(
2
), p.
024504
.10.1115/1.4000779
14.
Mayes
, I
. W.
, and
Davies
,
W. G. R.
,
1984
, “
Analysis of the Response of a Multi-Rotor-Bearing System Containing a Transverse Crack in a Rotor
,”
ASME J. Vib., Acoust.
,
106
(
1
), pp.
139
145
.10.1115/1.3269142
15.
Rubio
,
L.
,
2009
, “
An Efficient Method for Crack Identification in Simply Supported Euler–Bernoulli Beams
,”
ASME J. Vibr. Acoust.
,
131
(
5
), p.
051001
.10.1115/1.3142876
16.
Chondros
,
T. G.
,
Dimarogonas
,
A. D.
, and
Yao
,
J.
,
2001
, “
Vibration of a Beam With a Breathing Crack
,”
J. Sound Vib.
,
239
(
1
), pp.
57
67
.10.1006/jsvi.2000.3156
17.
Chatterjee
,
A.
,
2011
, “
Nonlinear Dynamics and Damage Assessment of a Cantilever Beam With Breathing Edge Crack
,”
ASME J. Vibr. Acoust.
,
133
(
5
), p.
051004
.10.1115/1.4003934
18.
Cheng
,
S. M.
,
Wu
,
X. J.
,
Wallace
,
W.
, and
Swamidas
,
A. S. J.
,
1999
, “
Vibrational Response of a Beam With a Breathing Crack
,”
J. Sound Vib.
,
225
(
1
), pp.
201
208
.10.1006/jsvi.1999.2275
19.
Dym
,
C. L.
, and
Shames
, I
. H.
,
1973
,
Solid Mechanics: A Variational Approach
,
McGraw-Hill
,
New York
, Chap. 4.
20.
Badlani
,
M.
, and
Midha
,
A.
,
1982
, “
Member Initial Curvature Effects on the Elastic Slider-Crank Mechanism Response
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
159
167
.10.1115/1.3256306
21.
Papadopoulos
,
C. A.
, and
Dimarogonas
,
A. D.
,
1988
, “
Coupled Longitudinal and Bending Vibration of a Cracked Shaft
,”
ASME J. Vib., Acoust.
,
110
(
1
), pp.
1
8
.10.1115/1.3269474
22.
Chondros
,
T. G.
,
Dimarogonas
,
A. D.
, and
Yao
,
J.
,
1998
, “
A Continuous Cracked Beam Vibration Theory
,”
J. Sound Vib.
,
215
(
1
), pp.
17
34
.10.1006/jsvi.1998.1640
23.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
1985
,
The Stress Analysis of Cracks Handbook
,
2nd ed.
,
Paris Productions Inc.
,
St. Louis, MO
.
24.
Rao
,
S. S.
,
2004
,
Mechanical Vibrations
,
4th ed.
,
Prentice Hall
,
Englewood Cliffs, NJ
, pp.
588
645
.
25.
Clough
,
R. W.
, and
Penzien
,
J.
,
1993
,
Dynamics of Structures
,
2nd ed.
,
McGraw-Hill
,
New York
, pp.
140
165
.
You do not currently have access to this content.