This paper presents a method for the detection of damage present in composite beam-type structures. The method, which successfully detected damage in steel beams, is applied to a glass fiber-reinforced beam in order to verify its suitability for composite structures as well. The damage indices were obtained using the gapped-smoothing method (GSM), which does not require a baseline model in order to detect damage. Despite the advantage of avoiding the need for a reference model altogether, unavoidable measurement errors make GSM rather ineffective. The proposed method uses the damage indices that GSM provides for synthesizing a set of likelihood functions that is processed under a Bayesian approach in order to reduce the effect of the noise and other uncertainty sources. The quality of the damage detection was examined by investigating an optimal sampling size analytically, and it was demonstrated through numerical simulation. This paper details the theory of the noise suppression method based on Bayesian data fusion, includes an analysis of the optimal sampling size, and presents the experimental results for two glass fiber-reinforced composite beams with a narrow and wide delamination, respectively. A noise-addition process was applied to the simulated data considering two different noise distributions. The composite beam was modeled in ANSYS, and harmonic analysis was used to obtain the frequency response functions at different beam locations. The results were obtained by adding 5, 10, and 15% noise in the simulated data, and they were then validated from the experimental results.

References

References
1.
Li
,
H. C. H.
,
Weis
,
M.
, and
Mouritz
,
A.P.
,
2004
, “
Damage Detection in a Fibre Reinforced Composite Beam Using Random Decrement Signatures
,”
Steel Compos. Struct.
,
66
, pp.
159
167
.10.1016/j.compstruct.2004.04.033
2.
Kesavan
,
A.
,
John
,
S.
, and
Herszberg
, I
.
,
2008
, “
Structural Health Monitoring of Composite Structures Using Artificial Intelligence Protocols
,”
J. Intell. Mater. Syst. Struct.
,
19
(
1
), pp.
63
72
.10.1177/1045389X06073688
3.
Bolotin
,
V. V.
,
1996
, “
Delaminations in Composite Structures: Its Origin, Buckling, Growth and Stability
,”
Composites, Part B
,
27
(
2
), pp.
129
145
.10.1016/1359-8368(95)00035-6
4.
Warraich
,
D. S.
,
Kelly
,
D. W.
,
Furukawa
,
T.
, and
Herszberg
,
I.
,
2009
, “
Ultrasonic Stochastic Localization of Hidden Defects in Composite Materials
,”
Proceedings of SAMPE
, Baltimore, MD, May 18–21.
5.
Lee
,
B. C.
, and
Staszewski
,
W. J.
,
2003
, “
Modelling of Lamb Waves for Damage Detection in Metallic Structures: Part I. Wave Propagation
,”
Smart Mater. Struct.
,
12
(
5
), pp.
804
814
.10.1088/0964-1726/12/5/018
6.
Banks
,
H. T.
,
Joyner
,
M. L.
,
Wincheski
,
B.
, and
Winfree
,
W. P.
,
2002
, “
Real Time Computational Algorithms for Eddy-Current-Based Damage Detection
,”
Inverse Probl.
,
18
(
3
), pp.
795
823
.10.1088/0266-5611/18/3/318
7.
Babbar
, V
.
,
Shiari
,
B.
, and
Clapham
,
L.
,
2004
, “
Mechanical Damage Detection With Magnetic Flux Leakage Tools: Modelling the Effect of Localized Residual Stresses
,”
IEEE Trans. Magn.
,
40
(
1
), pp.
43
49
.10.1109/TMAG.2003.821121
8.
Pye
,
C. J.
, and
Adams
,
R. D.
,
1981
, “
Detection of Damage in Fibre Reinforced Plastics Using Thermal Fields Generated During Resonant Vibration
,”
NDT Int.
,
14
(
3
), pp.
111
118
.10.1016/0308-9126(81)90027-4
9.
Doebling
,
S. W.
,
Farrar
,
C. R.
,
Prime
,
M. B.
, and
Shevitz
,
D. W.
,
1996
, “
Damage Identification and Health Monitoring of Structural and Mechanical Systems From Changes in Their Vibration Characteristics: A Literature Review
,” Los Alamos National Lab., Technical Report No. LA-13070-MS.
10.
Zou
,
Y.
,
Tong
,
L.
, and
Steven
,
G. P.
,
2000
, “
Vibration-Based Model-Dependent Damage (Delamination) Identification and Health Monitoring for Composite Structures—A Review
,”
J. Sound Vib.
,
230
(
2
), pp.
357
378
.10.1006/jsvi.1999.2624
11.
Salawu
,
O. S.
,
1997
, “
Detection of Structural Damage Through Changes in Frequency: A Review
,”
Eng. Struct.
,
19
(
9
), pp.
718
723
.10.1016/S0141-0296(96)00149-6
12.
Salawu
,
O. S.
, and
Williams
,
C.
,
1994
, “
Damage Location Using Vibration Mode Shapes
,”
Proceedings of 12th International Modal Analysis Conference
, Honolulu, HI, January 31–February 3, pp.
933
939
.
13.
Humar
,
J.
,
Bagchi
,
A.
, and
Xu
,
H.
,
2006
, “
Performance of Vibration-Based Techniques for the Identification of Structural Damage
,”
Struct. Health Monit.
,
5
(
3
), pp.
215
241
.10.1177/1475921706067738
14.
Farrar
,
C. R.
,
Doebling
,
S. W.
, and
Nix
,
D. A.
,
2001
, “
Vibration-Based Structural Damage Identification
,”
Philos. Trans. R. Soc. London, Ser. A,
359
(
1778
), pp.
131
149
.10.1098/rsta.2000.0717
15.
Pandey
,
A. K.
,
Biswas
,
M.
, and
Samman
,
M. M.
,
1991
, “
Damage Detection From Changes in Curvature Mode Shapes
,”
J. Sound Vib.
,
145
(
2
), pp.
321
332
.10.1016/0022-460X(91)90595-B
16.
Ratcliffe
,
C. P.
,
2000
, “
A Frequency and Curvature Based Experimental Method for Locating Damage in Structures
,”
ASME J. Vibr. Acoust.
,
122
, pp.
324
329
.10.1115/1.1303121
17.
Yoon
,
M. K.
,
Heider
,
D.
,
Gillespie
,
J. W.
, Jr.
,
Ratcliffe
,
C. P.
, and
Crane
,
R. M.
,
2005
, “
Local Damage Detection Using the Two-Dimensional Gapped-Smoothing Method
,”
J. Sound Vib.
,
279
(
1–2
), pp.
119
139
.10.1016/j.jsv.2003.10.058
18.
Montalvão
,
D.
,
Maia
,
N. M. M.
, and
Ribeiro
,
A. M. R.
,
2006
, “
A Review of Vibration-Based Structural Health Monitoring With Special Emphasis on Composite Materials
,”
Shock Vib.
,
38
(
4
), pp.
295
324
.10.1177/0583102406065898
19.
Baneen
,
U.
,
Kinkaid
,
N. M.
,
Guivant
,
J. E.
, and
Herszberg
, I
.
,
2012
, “
Vibration Based Damage Detection of a Beam-Type Structure Using Noise Suppression Method
,”
J. Sound Vib.
,
331
(
8
), pp.
1777
1788
.10.1016/j.jsv.2011.12.018
20.
Mann
,
A.
,
2011
, “
Cracks in Steel Structures
,”
Proc. Am. Soc. Civ. Eng.
,
164
(
1
), pp.
15
23
.10.1680/feng.2011.164.1.15
21.
Camanho
,
P. P.
,
Dávila
,
C. G.
, and
Ambur
,
D. R.
,
2001
, “
Numerical Simulation of Delamination Growth in Composite Materials
,” National Aeronautics and Space Administration, Langley Research Center, VA, Report No. NASA-TP-211041.
22.
Adediran
,
O.
,
2007
, “
Analytical and Experimental Vibration Analysis of Glass Fibre Reinforced Polymer Composite Beam
,” M.S. thesis, Blekinge Institute of Technology, Karlskrona, Sweden.
23.
Iott
,
J.
,
Haftka
,
R. T.
, and
Adelman
,
H. A.
,
1985
, “
Selecting Step Sizes in Sensitivity Analysis by Finite Differences
,” National Aeronautics and Space Administration, Technical Report NASA TM-86382.
24.
Sazonov
,
E.
, and
Klinkhachorn
,
P.
,
2005
, “
Optimal Spatial Sampling Interval for Damage Detection by Curvature or Strain Energy Mode Shapes
,”
J. Sound Vib.
,
285
(
4–5
), pp.
783
801
.10.1016/j.jsv.2004.08.021
25.
Ratcliffe
,
C. P.
, and
Bagaria
,
W. J.
,
1998
, “
Vibration Technique for Locating Delamination in a Composite Beam
,”
AIAA J.
,
36
(
6
), pp.
1074
1077
.10.2514/2.482
26.
Wang
,
J. H.
, and
Chuang
,
S. C.
,
2004
, “
Reducing Errors in the Identification of Structural Joint Parameters Using Error Functions
,”
J. Sound Vib.
,
273
(
1–2
), pp.
295
316
.10.1016/S0022-460X(03)00502-9
27.
Wang
,
J. H.
, and
Liou
,
C. M.
,
1990
, “
Identification of Parameters of Structural Joints by Use of Noise-Contaminated FRFs
,”
J. Sound Vib.
,
142
(
2
), pp.
261
277
.10.1016/0022-460X(90)90556-F
28.
Abdo
,
M.A.-B.
,
2012
, “
Damage Detection in Plate-Like Structures Using High-Order Mode Shape Derivatives
,”
Int. J. Civil Struct. Eng.
,
2
(
3
), pp.
801
816
.10.6088/ijcser.00202030009
29.
ME'ScopeVES software
,
2008
Vibrant Technology, Inc., Scotts Valley, CA, http://www.vibetech.com/go.cfm/en-us/content/index
You do not currently have access to this content.