This paper presents a new four-node composite element, which incorporates nd delaminations through its thickness. Based on the extended finite element method (X-FEM) technology, the element is particularized on a CLT (classical laminate theory). Delamination is considered in the kinematic equations with additional degrees of freedom. The result is a four-node quadrilateral element requiring only two single FEM (finite element method) formulations, a bending one and a membrane one. An important result is that this formulation has the same accuracy as when separate elements are considered (“four region approach”). It is furthermore proven that the delaminated element passes the “patch test” if the selected FEM formulations to build the element pass the test in the pure single problems, making this methodology very attractive to develop other fractured elements. To illustrate this result, two benchmark problems were studied: first a complete delaminated cantilever plate, and second a complete delaminated circular plate. The element was tested in the context of SHM (structural health monitoring). Frequency shifts, damage indexes, and changes in mode shapes and frequency response functions (FRF) were obtained to quantify the severity of damage due to delamination.

References

1.
Rytter
,
A.
,
1993
, “
Vibration Based Inspection of Civil Engineering Structures
,” Ph.D. thesis, Department of Building Technology Structural Engineering, University of Aalborg, Aalborg, Denmark.
2.
Zou
,
Y.
,
Tong
,
L.
, and
Steven
,
G. P.
,
2000
, “
Vibration-Based Model-Dependent Damage (Delamination) Identification and Health Monitoring for Composite Structures—A Review
,”
J. Sound Vib.
,
230
(
2
), pp.
357
378
.10.1006/jsvi.1999.2624
3.
Doebling
,
S. W.
,
Farrar
,
C. R.
,
Prime
,
M. B.
, and
Shevitz
,
D. W.
,
1996
, “
Damage Identification and Health Monitoring of Structural and Mechanical Systems From Changes in Their Vibration Characteristics: A Literature Review
,” technical report, Los Alamos National Laboratory, Los Alamos, NM.
4.
Farrar
,
C. R.
,
Doebling
,
S. W.
, and
Nix
,
D. A.
,
2001
, “
Vibration-Based Structural Damage Identification
,”
Philos. Trans. R. Soc. London Ser. A
,
359
(
1778
), pp.
131
149
.10.1098/rsta.2000.0717
5.
Balageas
,
D.
,
Fritzen
,
C.
, and
Güemes
,
A.
,
2007
,
Structural Health Monitoring
,
ISTE
,
Oxford, UK
.
6.
Alvandi
,
A.
, and
Cremona
,
C.
,
2006
, “
Assessment of Vibration-Based Damage Identification Techniques
,”
J. Sound Vib.
,
292
(
1–2
), pp.
179
202
.10.1016/j.jsv.2005.07.036
7.
Fritzen
,
C. P.
, and
Bohle
,
K.
,
1999
, “
Identification of Damage in Large Scale Structures by Means of Measured FRFs-Procedure and Application to the I40-Highway Bridge
,”
Damage Assessment of Structures, Proceedings of the International Conference on Damage Assessment of Structures (DAMAS 99)
,
Dublin, Ireland
, June 28–30, pp.
310
319
.
8.
Bohle
,
K.
, and
Fritzen
,
C. P.
,
2003
, “
Results Obtained by Minimising Natural Frequency and MAC-Value Errors of a Plate Model
,”
Mech. Syst. Signal Process.
,
17
(
1
), pp.
55
64
.10.1006/mssp.2002.1539
9.
Yu
,
L.
, and
Yin
,
T.
,
2010
, “
Damage Identification in Frame Structures Based on FE Model Updating
,”
ASME J. Vib. Acoust.
,
132
(
5
), p.
051007
.10.1115/1.4002125
10.
Liu
,
W.
,
Gao
,
W. C.
, and
Sun
,
Y.
,
2009
, “
Application of Modal Identification Methods to Spatial Structure Using Field Measurement Data
,”
ASME J. Vib. Acoust.
,
131(3)
, p.
034503
.10.1115/1.3085881
11.
Jenq
,
S. T.
, and
Lee
,
W. D.
,
1997
, “
Identification of Hole Defect for GFRP Woven Laminates Using Neural Network Scheme
,”
Structural Health Monitoring: Current Status and Perspectives
,
F. K.
Chang
, Ed.,
International Workshop on Structural Health Monitoring, Stanford University
,
Stanford, CA
, September 18–20, pp.
741
751
.
12.
Feng
,
M. Q.
, and
Bahng
,
E. Y.
,
1999
, “
Damage Assessment of Bridges With Jacketed RC Columns Using Vibration Test
,”
Smart Structures and Materials 1999: Smart Systems for Bridges, Structures and Highways
,
S. C.
Liu
, ed.,
Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), Conference on Smart Systems for Bridges, Structures, and Highways at Smart Structures and Material
s 1999
,
Newport Beach, CA
, March 1–2, pp.
316
327
.
13.
Zak
,
A.
,
Krawczuk
,
M.
, and
Ostachowicz
,
W.
,
2001
, “
Vibration of a Laminated Composite Plate With Closing Delamination
,”
J. Intell. Mater. Syst. Struct.
,
12
(
8
), pp.
545
551
.10.1177/10453890122145320
14.
Zak
,
A.
,
Krawczuk
,
M.
, and
Ostachowicz
,
W.
,
2000
, “
Numerical and Experimental Investigation of Free Vibration of Multilayer Delaminated Composite Beams and Plates
,”
Comput. Mech.
,
26
(
3
), pp.
309
315
.10.1007/s004660000178
15.
Hanagud
,
S.
, and
Luo
,
H.
,
1997
, “
Damage Detection and Health Monitoring Based on Structural Dynamics
,”
Structural Health Monitoring: Current Status and Perspectives
,
F. K.
Chang
, ed.,
International Workshop on Structural Health Monitoring, Stanford University
,
Stanford, CA
, September 18–20, pp.
715
726
.
16.
Kim
,
H. Y.
, and
Hwang
,
W.
,
2002
, “
Effect of Debonding on Natural Frequencies and Frequency Response Functions of Honeycomb Sandwich Beams
,”
Composite Struct.
,
55
(
1
), pp.
51
62
.10.1016/S0263-8223(01)00136-2
17.
Krawczuk
,
M.
, and
Ostachowicz
,
W.
,
2002
, “
Identification of Delamination in Composite Beams by Genetic Algorithm
,”
Sci. Eng. Composite Mater.
,
10
(
2
), pp.
147
155
.10.1515/SECM.2002.10.2.147
18.
Ling
,
H. Y.
,
Lau
,
K. T.
,
Cheng
,
L.
, and
Jin
,
W.
,
2005
, “
Fibre Optic Sensors for Delamination Identification in Composite Beams Using a Genetic Algorithm
,”
Smart Mater. Struct.
,
14
(
1
), pp.
287
295
.10.1088/0964-1726/14/1/030
19.
Wei
,
Z.
,
Yam
,
L. H.
, and
Cheng
,
L.
,
2005
, “
Delamination Assessment of Multilayer Composite Plates Using Model-Based Neural Networks
,”
J. Vib. Control
,
11
(
5
), pp.
607
625
.10.1177/1077546305052317
20.
Sanders
,
G. W.
,
Akhavan
,
F.
,
Watkins
,
S. E.
, and
Chandrashekhara
,
K.
,
1997
, “
Fiber Optic Vibration Sensing and Neural Networks Methods for Prediction of Composite Beam Delamination
,”
Smart Structures and Integrated Systems—Smart Structures and Materials 1997
,
M. E.
Regelbrugge
, ed.,
Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), Conference on Smart Structures and Integrated Systems—Smart Structures and Materials 1997
,
San Diego, CA
, March 3–6, pp.
858
867
.
21.
Watkins
,
S. E.
,
Sanders
,
G. W.
,
Akhavan
,
F.
, and
Chandrashekhara
,
K.
,
2002
, “
Modal Analysis Using Fiber Optic Sensors and Neural Networks for Prediction of Composite Beam Delamiation
,”
Smart Mater. Struct.
,
11
(
4
), pp.
489
495
.10.1088/0964-1726/11/4/302
22.
Harrison
,
C.
, and
Butler
,
R.
,
2001
, “
Locating Delaminations in Composite Beams Using Gradient Techniques and a Genetic Algorithm
,”
AIAA J.
,
39
(
7
), pp.
1383
1389
.10.2514/2.1457
23.
Figueiredo
,
E.
,
Park
,
G.
,
Farinholt
,
K. M.
,
Farrar
,
C. R.
, and
Lee
,
J.-R.
,
2012
, “
Use of Time-Series Predictive Models for Piezoelectric Active-Sensing in Structural Health Monitoring Applications
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
041014
.10.1115/1.4006410
24.
Zwink
,
B. R.
,
2012
, “
Nondestructive Evaluation of Composite Material Damage Using Vibration Reciprocity Measurements
,”
ASME J. Vib. Acoust.
,
134(4)
, p.
041013
.10.1115/1.4006409
25.
Saravanos
,
D. A.
, and
Hopkins
,
D. A.
,
1996
, “
Effects of Delaminations on the Damped Dynamic Characteristics of Composite Laminates: Analysis and Experiments
,”
J. Sound Vib.
,
192
(
5
), pp.
977
993
.10.1006/jsvi.1996.0229
26.
Reddy
,
J. N.
,
1997
,
Mechanics of Laminated Composite Plate and Shells. Theory and Analysis
, 2nd ed.,
CRC
,
Boca Raton, FL
.
27.
Delia
,
C. N.
, and
Shu
,
D.
,
2007
, “
Vibration of Delaminated Composite Laminates: A Review
,”
ASME Appl. Mech. Rev.
,
60
, pp.
1
20
.10.1115/1.2375141
28.
Damghani
,
M.
,
Kennedy
,
D.
, and
Featherston
,
C.
,
2011
, “
Critical Buckling of Delaminated Composite Plates Using Exact Stiffness Analysis
,”
Comput. Struct.
,
89
(
13–14
), pp.
1286
1294
.10.1016/j.compstruc.2011.04.003
29.
Tafreshi
,
A.
,
2004
, “
Efficient Modelling of Delamination Buckling in Composite Cylindrical Shells Under Axial Compression
,”
Composite Struct.
,
64
, pp.
511
520
.10.1016/j.compstruct.2003.09.050
30.
Melenk
,
J. M.
, and
Babuska
, I
.
,
1996
, “
The Partition of Unity Finite Element Method: Basic Theory and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
139
(
1–4
), pp.
289
314
.10.1016/S0045-7825(96)01087-0
31.
Babuska
, I
.
, and
Melenk
,
J. M.
,
1997
, “
The Partition of Unity Method
,”
Int. J. Numer. Methods Eng.
,
40
(
4
), pp.
727
758
.10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
32.
Chattopadhyay
,
A.
,
Dragomir-Daescu
,
D.
, and
Gu
,
H.
,
1997
, “
Dynamic Response of Smart Composites With Delaminations
,”
Structural Health Monitoring: Current Status and Perspectives
,
F. K.
Chang
, ed.,
International Workshop on Structural Health Monitoring, Stanford University
,
Stanford, CA
, September 18–20, pp.
729
740
.
33.
Chattopadhyay
,
A.
,
Kim
,
H. S.
, and
Ghoshal
,
A.
,
2004
, “
Non-Linear Vibration Analysis of Smart Composite Structures With Discrete Delamination Using a Refined Layerwise Theory
,”
J. Sound Vib.
,
273
(
1–2
), pp.
387
407
.10.1016/S0022-460X(03)00561-3
34.
Swann
,
C.
,
Chattopadhyay
,
A.
, and
Ghoshal
,
A.
,
2005
, “
Characterization of Delamination by Using Damage Indices
,”
J. Reinforced Plastics Composites
,
24
(
7
), pp.
699
711
.10.1177/0731684405046080
35.
Dvorkin
,
E. N.
, and
Vassolo
,
S. L.
,
1989
, “
A Quadrilateral 2-D Finite Element Based on Mixed Interpolation of Tensorial Components
,”
Eng. Comput.
,
6
, pp.
217
224
.10.1108/eb023777
36.
Batoz
,
J. L.
, and
Bentahar
,
M.
,
1982
, “
Evaluation of a New Quadrilateral Thin Plate Bending Element
,”
Int. J. Numer. Methods Eng.
,
18
(
11
), pp.
1655
1677
.10.1002/nme.1620181106
37.
Taylor
,
R. L.
,
2005
,
FEAP. A Finite Element Analysis Program: Programmer Manual
,
University of California
,
Berkeley
, Berkeley, CA, http://www.ce.berkeley.edu/
rlt.
38.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2005
,
The Finite Element Method: Its Basis and Fundamentals
, 6th ed.,
Elsevier
,
Oxford, UK
., Vol. 1.
You do not currently have access to this content.