This paper focuses on the analytical evaluation of the acoustic behavior of multilayer walls when subjected to 3D and moving 2.5D loads. The computations are performed in the frequency domain for a wall system composed of multiple solid and fluid layers. The pressure generated by the 3D load is computed as Bessel integrals, following the transformations proposed by Sommerfeld. The integrals are discretized by assuming the existence of a set of virtual loads equally spaced in a direction perpendicular to the plane of the wall. The expressions presented here allow the pressure field to be computed without discretizing the interfaces between layers. The full interaction between the fluid (air) and the solid layers is taken into account. As the 3D pressure field can also be computed as a summation of spatially sinusoidal harmonic line loads, which can be seen as a moving 2.5D load, this paper studies the contribution made to the global 3D response by the insulation provided by the wall when subjected to each of these loads. To illustrate the main findings, simulated responses are computed in the frequency domains for single and double walls that are subjected to 3D and moving 2.5D loads. Additionally, time responses have been synthesized using inverse Fourier transformations.

References

1.
Warnock
,
A.
, and
Fasold
,
W.
,
1997
,
Sound Insulation: Airborne and Impact, Encyclopedia of Acoustics
, Vol. 3,
Wiley-Interscience Publication
,
New York
, pp.
1129
1161
.
2.
Novikov
,
I.
,
1998
, “
Low-Frequency Sound Insulation of Thin Plates
,”
Appl. Acoust.
,
54
, pp.
83
90
.10.1016/S0003-682X(96)00067-9
3.
London
,
A.
,
1950
, “
Transmission of Reverberant Sound Through Double Walls
,”
J. Acoust. Soc. Am.
,
22
, pp.
270
279
.10.1121/1.1906601
4.
1960
,
Noise Reduction
,
L.
Beranek
, ed.,
McGraw-Hill Book Company
,
New York
.
5.
Fahy
,
F.
,
2001
,
Foundations of Engineering Acoustics
,
Academic Press
,
New York
.
6.
Gösele
,
K.
,
1980
, “
Zur Berechnung der Luftschalldämmung von doppelschaligen Bauteilen (ohne Verbindung der Schalen)
,”
Acustica
,
45
, pp.
218
227
.
7.
Panneton
,
R.
, and
Atalla
,
N.
,
1996
, “
Numerical Prediction of Sound Transmission Through Finite Multiplayer Systems With Poroelastic Materials
,”
J. Acoust. Soc. Am.
,
100
(
1
), pp.
346
354
.10.1121/1.415956
8.
Sgard
,
F.
,
Atalla
,
N.
, and
Nicolas
,
J.
,
2000
, “
A Numerical Model for the Low Frequency Diffuse Field Sound Transmission Loss of Double-Wall Sound Barriers With Elastic Porous Linings
,”
J. Acoust. Soc. Am.
,
108
(
6
), pp.
2865
2872
.10.1121/1.1322022
9.
Steel
,
J.
, and
Craik
,
R.
,
1994
, “
Statistical Energy Analysis of Structure-Borne Sound Transmission by Finite Element Methods
,”
J. Sound Vib.
,
178
(
4
), pp.
553
561
.10.1006/jsvi.1994.1503
10.
Craik
,
R.
,
Nightingale
,
T.
, and
Steel
,
J.
,
1997
, “
Sound Transmission Through a Double Leaf Partition With Edge Flanking
,”
J. Acoust. Soc. Am.
,
101
(
2
), pp.
964
969
.10.1121/1.418054
11.
Craik
,
R.
, and
Smith
,
R.
,
2000
, “
Sound Transmission Through Double Leaf Lightweight Partitions—Part I: Airborne Sound
,”
Appl. Acoust.
,
61
, pp.
223
245
.10.1016/S0003-682X(99)00070-5
12.
Coz-Díaz
,
J.
,
Álvarez-Rabanal
,
F.
,
García-Nieto
,
P.
, and
Serrano-López
,
M.
,
2010
, “
Sound Transmission Loss Analysis Through a Multilayer Lightweight Concrete Hollow Brick Wall by FEM and Experimental Validation
,”
Building and Environment
,
45
(
11
), pp.
2373
2386
.10.1016/j.buildenv.2010.04.013
13.
Xin
,
F.
, and
Lu
,
T.
,
2011
, “
Analytical Modeling of Sound Transmission Through Clamped Triple-Panel Partition Separated by Enclosed Air Cavities
,”
Eur. J. Mech. A/Solids
,
30
(
6
), pp.
770
782
.10.1016/j.euromechsol.2011.04.013
14.
2002
,
Formulas of Acoustics
,
F.
Mechel
, ed.,
Springer-Verlag
,
Berlin
.
15.
Tadeu
,
A.
, and
António
,
J.
,
2002
, “
Acoustic Insulation of Single Panel Walls Provided by Analytical Expressions Versus the Mass Law
,”
J. Sound Vib.
,
257
(
3
), pp.
457
475
.10.1006/jsvi.2002.5048
16.
António
,
J.
,
Tadeu
,
A.
, and
Godinho
,
L.
,
2003
, “
Analytical Evaluation of the Acoustic Insulation Provided by Double Infinite Walls
,”
J. Sound Vib.
,
263
(
1
), pp.
113
129
.10.1016/S0022-460X(02)01100-8
17.
Tadeu
,
A.
,
Pereira
,
A.
,
Godinho
,
L.
, and
Antonio
,
J.
,
2007
, “
Prediction of Airborne Sound and Impact Sound Insulation Provided by Single and Multilayer Systems Using Analytical Expressions
,”
Appl. Acoust.
,
68
(
1
), pp.
17
42
.10.1016/j.apacoust.2006.05.012
18.
Sheng
,
X.
,
Jones
,
C.
, and
Petyt
,
M.
,
1999
, “
Ground Vibration Generated by a Load Moving Along a Railway Track
,”
J. Sound Vib.
,
228
(
1
), pp.
129
156
.10.1006/jsvi.1999.2406
19.
Adam
,
M.
,
Pflanz
,
G.
, and
Schmid
,
G.
,
2000
, “
Two- and Three-Dimensional Modelling of Half-Space and Train-Track Embankment Under Dynamic Loading
,”
Soil Dynamics and Earthquake Eng.
,
19
(
8
), pp.
559
573
.10.1016/S0267-7261(00)00068-3
20.
Xia
,
H.
,
Cao
,
Y.
, and
De Roeck
,
G.
,
2010
, “
Theoretical Modeling and Characteristic Analysis of Moving-Train Induced Ground Vibrations
,”
J. Sound Vib.
,
329
(
7
), pp.
819
832
.10.1016/j.jsv.2009.10.007
21.
Gao
,
G.
,
Chen
,
Q.
,
He
,
J.
, and
Liu
,
F.
,
2012
, “
Investigation of Ground Vibration Due to Trains Moving on Saturated Multi-Layered Ground by 2.5D Finite Element Method
,”
Soil Dynamics and Earthquake Engineering
,
40
, pp.
87
98
.10.1016/j.soildyn.2011.12.003
22.
Tanaka
,
K.
, and
Ishii
,
S.
,
1981
, “
Acoustic Radiation From a Moving Line Source
,”
J. Sound Vib.
,
77
(
3
), pp.
397
401
.10.1016/S0022-460X(81)80175-7
23.
Obrezanova
,
O.
, and
Rabinovich
,
V.
,
1998
, “
Acoustic Field Generated by Moving Sources in Stratified Waveguides
,”
Wave Motion
,
27
(
2
), pp.
155
167
.10.1016/S0165-2125(97)00039-5
24.
Lee
,
P.
, and
Wang
,
J.
,
2010
, “
The Simulation of Acoustic Radiation From a Moving Line Source With Variable Speed
,”
Appl. Acoust.
,
71
(
10
), pp.
931
939
.10.1016/j.apacoust.2010.06.003
25.
Sommerfeld
,
A.
,
1950
,
Mechanics of Deformable Bodies
,
Academic Press, Inc.
,
New York
.
26.
Ewing
,
W.
,
Jardetzky
,
W.
, and
Press
,
F.
,
1957
,
Elastic Waves in Layered Media
,
McGraw-Hill Book Company
,
New York
.
27.
Tadeu
,
A.
,
António
,
J.
,
Godinho
,
L.
, and
Amado Mendes
,
P.
,
2012
, “
Simulation of Sound Absorption in 2D Thin Elements Using a Coupled BEM/TBEM Formulation in the Presence of Fixed and Moving 3D Sources
,”
J. Sound Vib.
,
331
, pp.
2386
2403
.10.1016/j.jsv.2012.01.003
28.
Jensen
,
F.
,
Kuperman
,
W.
,
Porter
,
M.
, and
Schmidt
,
H.
,
1994
,
Computational Ocean Acoustics
,
American Institute of Physics
,
New York
.
29.
Schwartz
,
L.
,
1966
,
Theorie des Distributions
,
Hermann
,
Paris
.
30.
Bouchon
,
M.
, and
Aki
,
K.
,
1977
, “
Discrete Wave-Number Representation of Seismic-Source Wave Field
,”
Bull. Seismol. Soc. Am.
,
67
, pp.
259
277
.
31.
Bouchon
,
M.
,
1979
, “
Discrete Wave Number Representation of Elastic Wave Fields in Three-Space Dimensions
,”
J. Geophys. Res.
,
84
, pp.
3609
3614
.10.1029/JB084iB07p03609
You do not currently have access to this content.