In this paper, we make an attempt to describe the phenomenon of wave propagation when a disturbance is introduced in an electromechanical system having a lumped parameter representation. We initially discuss mechanical waves in homogeneous spring mass systems and then focus on electromechanical wave propagation in power systems. We primarily discuss ring and open end systems. Eigenvalue analysis of the system is done to find the behavior of the orthogonal modes as a function of time and space. We then derive an expression for velocity of propagation of the disturbance wave and the transport delay associated with it. Effects of system parameters, like generator inertia and transmission line resistance, are also discussed. Although the theory was developed considering homogeneous systems (identical values of inertia/mass, line parameters/spring constant, etc.), an implementation on a nonhomogeneous system is also presented in this paper. Numerical simulations were done and compared with the analytical results derived in this paper.

References

References
1.
Tsai
,
S.-J.
,
Zhang
,
L.
,
Phadke
,
A. G.
,
Liu
,
Y.
,
Ingram
,
M. R.
,
Bell
,
S. C.
,
Grant
,
I. S.
,
Bradshaw
,
D. T.
,
Lubkeman
,
D.
, and
Tang
,
L.
,
2007
, “
Frequency Sensitivity and Electro-Mechanical Propagation Simulation Study in Large Power Systems
,”
IEEE Trans. Circuits Syst., I: Regul. Pap.
,
54
(
8
), pp.
1819
1828
.10.1109/TCSI.2007.902542
2.
Feeny
,
B. F.
,
2008
, “
A Complex Orthogonal Decomposition for Wave Motion Analysis
,”
J. Sound Vib.
,
310
, pp.
77
90
.10.1016/j.jsv.2007.07.047
3.
Kerschen
,
G.
,
Golinval
,
J. C.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2005
, “
The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview
,”
Nonlinear Dyn.
,
41
, pp.
147
169
.10.1007/s11071-005-2803-2
4.
Feeny
,
B. F.
, and
Kappagantu
,
R.
,
1998
, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
,
211
, pp.
607
616
.10.1006/jsvi.1997.1386
5.
Semlyen
,
A.
,
1973
, “
Analysis of Disturbance Propagation in Power Systems Based on a Homogeneoue Dynamic Model
,”
IEEE Trans. Power Apparatus Sys.
,
PAS-93
(
2
), pp.
676
684
.10.1109/TPAS.1974.294030
6.
Parashar
,
M.
,
Thorp
,
J.
, and
Seyler
,
C. E.
,
2004
, “
Continuum Modeling of Electromechanical Dynamics in Large-Scale Power Systems
,”
IEEE Trans. Circuits Syst.
,
51
(
9
), pp.
1848
1858
.10.1109/TCSI.2004.834480
7.
Thorp
,
J.
,
Seyler
,
C. E.
, and
Phadke
,
A. G.
,
1998
, “
Electromechanical Wave Propagation in Large Electric Power Systems
,”
IEEE Trans. Circuits Syst.
,
45
(
6
), pp.
614
622
.10.1109/81.678472
8.
Wang
,
D.
,
Wang
,
X.
, and
Thorp
,
J.
,
2006
, “
Study on Electromechanical Wave Continuum Model for Power Systems in Mechanics
,”
IEEE Power Engineering Society General Meeting
, Montreal, Canada, June 18–22. 10.1109/PES.2006.1709216
9.
Strang
,
G.
,
1998
,
Linear Algebra and Its Applications
,
3rd ed.
,
Thomson Learning
, Singapore.
10.
Davis
,
P. J.
,
1979
,
Circulant Matrices
,
Wiley
,
New York
.
11.
Coulson
,
C. A.
,
1977
,
Waves, a Mathematical Approach to the Common Types of Wave Motion
,
2nd ed.
,
Longman
,
New York
.
12.
Anderson
,
P. M.
, and
Fouad
,
A. A.
,
2003
,
Power System Control and Stability
,
2nd ed.
,
Wiley
,
New York
.
13.
Kundur
,
P.
,
2006
,
Power System Stability and Control
, 2nd reprint,
Tata McGraw-Hill
,
New Delhi, India
.
14.
Gray
,
R. M.
,
2012
, “
Toeplitz and Circulant Matrices: A Review
,” http://ee.stanford.edu/∼gray/toeplitz.pdf
15.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
2007
,
Matrix Computations
,
3rd ed.
,
Hindustan Book Agency
,
New Delhi, India
.
16.
Watkins
,
D. S.
,
2002
,
Fundamentals of Matrix Computations
,
2nd ed.
,
Wiley Interscience
,
New York
.
17.
Padiyar
,
K. R.
,
2008
,
Power System Dynamics
,
2nd ed.
,
BS Publications
,
Hyderabad, India
.
You do not currently have access to this content.