The present study focuses on the uncertainty quantification of an aeroelastic instability system. This is a classical dynamical system often used to model the flow induced oscillation of flexible structures such as turbine blades. It is relevant as a preliminary fluid-structure interaction model, successfully demonstrating the oscillation modes in blade rotor structures in attached flow conditions. The potential flow model used here is also significant because the modern turbine rotors are, in general, regulated in stall and pitch in order to avoid dynamic stall induced vibrations. Geometric nonlinearities are added to this model in order to consider the possibilities of large twisting of the blades. The resulting system shows Hopf and period-doubling bifurcations. Parametric uncertainties have been taken into account in order to consider modeling and measurement inaccuracies. A quadrature based spectral uncertainty tool called polynomial chaos expansion is used to quantify the propagation of uncertainty through the dynamical system of concern. The method is able to capture the bifurcations in the stochastic system with multiple uncertainties quite successfully. However, the periodic response realizations are prone to time degeneracy due to an increasing phase shifting between the realizations. In order to tackle the issue of degeneracy, a corrective algorithm using constant phase interpolation, which was developed earlier by one of the authors, is applied to the present aeroelastic problem. An interpolation of the oscillatory response is done at constant phases instead of constant time and that results in time independent accuracy levels.

References

References
1.
Soize
,
C.
,
Capiez-Lernout
,
E.
,
Durand
,
J.-F.
,
Fernandez
,
C.
, and
Gagliardini
,
L.
,
2008
, “
Probabilistic Model Identification of Uncertainties in Computational Models for Dynamical Systems and Experimental Validation
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
150
163
.10.1016/j.cma.2008.04.007
2.
Hamel
,
J. M.
, and
Azarm
,
S.
,
2011
, “
Reducible Uncertain Interval Design by Kriging Metamodel Assisted Multi-Objective Optimization
,”
ASME J. Mech. Des.
,
133
, p.
011002
.10.1115/1.4002974
3.
Ghanem
,
R., G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
4.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
, pp.
897
936
.10.2307/2371268
5.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2003
, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos
,”
J. Comput. Phys.
,
187
, pp.
137
167
.10.1016/S0021-9991(03)00092-5
6.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput. (USA)
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
7.
Soize
,
C.
, and
Ghanem
,
R.
,
2004
, “
Physical Systems With Random Uncertainties: Chaos Representations With Arbitrary Probability Measure
,”
SIAM J. Sci. Comput. (USA)
,
26
, pp.
395
410
.10.1137/S1064827503424505
8.
Witteveen
,
J. A. S.
,
Sarkar
,
S.
, and
Bijl
,
H.
,
2007
, “
Modeling Physical Uncertainties in Dynamic Stall Induced Fluid-Structure Interaction of Turbine Blades Using Arbitrary Polynomial Chaos
,”
Comput. Struct.
,
85
, pp.
866
878
.10.1016/j.compstruc.2007.01.004
9.
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2006
, “
Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures
,”
SIAM J. Sci. Comput. (USA)
,
28
, pp.
901
928
.10.1137/050627630
10.
Babuska
,
I. M.
,
Nobile
,
F.
, and
Tempone
,
R.
,
2007
, “
A Stochastic Collocation Method for Elliptic Partial Differential Equations With Random Input Data
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
45
(
3
), pp.
1005
1034
.10.1137/050645142
11.
Loeven
,
G. J. A.
,
Witteveen
,
J. A. S.
, and
Bijl
,
H.
,
2007
, “
Probabilistic Collocation: An Efficient Non-Intrusive Approach for Arbitrarily Distributed Parametric Uncertainties
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, January 8–11,
AIAA
Paper No. 2007-317.10.2514/6.2007-317
12.
Reagan
,
M. T.
,
Najm
,
H. N.
,
Ghanem
,
R. G.
, and
Knio
,
O. M.
,
2003
, “
Uncertainty Quantification in Reacting-Flow Simulations Through Non-Intrusive Spectral Projection
,”
Combust. Flame
,
132
, pp.
545
555
.10.1016/S0010-2180(02)00503-5
13.
Le Maitre
,
O. P.
,
Reagan
,
M. T.
,
Najm
,
H. N.
,
Ghanem
,
R. G.
, and
Knio
,
O. M.
,
2002
, “
A Stochastic Projection Method for Fluid Flow: II. Random Process
,”
J. Comput. Phys.
,
181
, pp.
9
44
.10.1006/jcph.2002.7104
14.
Pettit
,
C. L.
, and
Beran
,
P. S.
,
2006
, “
Spectral and Multi-Resolution Wiener Expansions of Oscillatory Stochastic Process
,”
J. Sound Vib.
,
294
, pp.
752
779
.10.1016/j.jsv.2005.12.043
15.
Pettit
,
C. L.
, and
Beran
,
P. S.
,
2004
, “
Polynomial Chaos Expansion Applied to Airfoil Limit Cycle Oscillations
,”
45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Palm Springs, CA, April 19–22,
AIAA
Paper No. 2004-1691.10.2514/6.2004-1691
16.
Chassaing
,
J.-C.
,
Lucor
,
D.
, and
Trégon
J.
,
2012
, “
Stochastic Nonlinear Aeroelastic Analysis of a Supersonic Lifting Surface Using an Adaptive Spectral Method
,”
J. Sound Vib.
,
331
, pp.
394
411
.10.1016/j.jsv.2011.08.027
17.
Poirel
,
D.
, and
Price
,
S. J.
,
2007
Bifurcation Characteristics of a Two-Dimensional Structurally Nonlinear Airfoil in Turbulent Flow
,”
Nonlinear Dyn.
,
48
(4), pp.
423
–435.10.1007/s11071-006-9096-y
18.
Poirel
,
D.
, and
Price
,
S. J.
,
2003
, “
Response Probability Structure of a Structurally Nonlinear Fluttering Airfoil in Turbulent Flow
,”
Probab. Eng. Mech.
,
18
, pp.
185
202
.10.1016/S0266-8920(03)00013-4
19.
Desai
,
A.
, and
Sarkar
,
S.
,
2010
, “
Analysis of a Nonlinear Aeroelastic System With Parametric Uncertainties Using Polynomial Chaos Expansion
,”
Math. Probl. Eng.
,
2010
, p.
379472
.10.1155/2010/379472
20.
Witteveen
,
J. A. S.
,
Loeven
,
G. J. A.
,
Sarkar
,
S.
, and
Bijl
,
H.
,
2008
, “
Probabilistic Collocation for Period-1 Limit Cycle Oscillations
,”
J. Sound Vib.
,
311
, pp.
421
439
.10.1016/j.jsv.2007.09.017
21.
Ghisu
,
T.
,
Parks
,
G. T.
,
Jarrett
,
P. M.
, and
Clarkson
,
P. J.
,
2010
, “
Adaptive Polynomial Chaos for Gas Turbine Compression Systems Performance Analysis
,”
AIAA J.
,
48
(
6
), pp.
1156
1170
.10.2514/1.J050012
22.
Millman
,
D. R.
,
King
,
P. I.
,
Raymond
,
C. M.
,
Beran
,
P. S.
, and
Chilton
,
L. K.
,
2006
, “
Uncertainty Quantification With a B-Spline Stochastic Projection
,”
AIAA J.
,
44
, pp.
1845
1853
.10.2514/1.11468
23.
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2006
, “
Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
5582
5596
.10.1016/j.cma.2005.10.016
24.
Millman
,
D. R.
,
King
,
P. I.
,
Raymond
,
C. M.
,
Beran
,
P. S.
, and
Chilton
,
L. K.
,
2005
, “
Estimating the Probability of Failure of a Nonlinear Aeroelastic System
,”
J. Aircr.
,
43
(
1
), pp.
504
516
.10.2514/1.13401
25.
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2005
, “
An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations
,”
J. Comput. Phys.
,
209
, pp.
617
642
.10.1016/j.jcp.2005.03.023
26.
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2006
, “
Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs: An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations
,”
J. Sci. Comput.
,
27
, pp.
455
464
.10.1007/s10915-005-9038-8
27.
Meitour
,
J. L.
,
Lucor
,
D.
, and
Chassaing
,
J. C.
,
2010
, “
Prediction of Stochastic Limit Cycle Oscillations Using an Adaptive Polynomial Chaos Method
,”
ASD J.
,
2
, pp.
3
22
.10.3293/asdj.2010.4
28.
Gerritsma
,
M.
,
van der Steen
,
J. B.
,
Vos
,
P.
, and
Karniadakis
,
G.
,
2010
, “
Time-Dependent Generalized Polynomial Chaos
,”
J. Comput. Phys.
,
229
, pp.
8333
8363
.10.1016/j.jcp.2010.07.020
29.
Witteveen
,
J. A. S.
, and
Bijl
,
H.
,
2008
, “
An Alternative Unsteady Adaptive Stochastic Finite Elements Formulation Based on Interpolation at Constant Phase
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
578
591
.10.1016/j.cma.2008.09.005
30.
Witteveen
,
J. A. S.
, and
Bijl
,
H.
,
2009
, “
Effect of Randomness on Multi-Frequency Aeroelastic Responses Resolved by Unsteady Adaptive Stochastic Finite Elements
,”
J. Comput. Phys.
,
228
, pp.
7025
7045
.10.1016/j.jcp.2009.06.013
31.
Le Maître
,
O. P.
,
Mathelin
,
L.
,
Knio
,
O. M.
, and
Hussaini
,
M. Y.
,
2010
, “
Asynchronous Time Integration for Polynomial Chaos Expansion of Uncertain Periodic Dynamics
,”
Discrete Contin. Dyn. Syst.
,
28
, pp.
199
226
.10.3934/dcds.2010.28.199
32.
Fung
,
Y. C.
,
1955
,
An Introduction to the Theory of Aeroelasticity
,
John Wiley and Sons
,
New York
.
33.
Lee
,
B.
,
Jiang
,
L.
, and
Wong
,
Y.
,
1998
, “
Flutter of an Airfoil With a Cubic Nonlinear Restoring Force
,” 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Long Beach, CA, April 20–23,
AIAA
Paper No. 98-1725.10.2514/6.1998-1725
34.
Wiener
,
N.
,
1958
,
Nonlinear Problems in Random Theory
,
MIT Technology Press and John Wiley and Sons
,
New York
.
35.
Lucor
,
D.
,
Su
,
C.-H.
, and
Karniadakis
,
G. E.
,
2004
, “
Generalized Polynomial Chaos and Random Oscillators
,”
Int. J. Numer. Methods Eng.
,
60
, pp.
571
596
.10.1002/nme.976
36.
Lucor
,
D.
, and
Karniadakis
,
G. E.
,
2004
, “
Adaptive Generalized Polynomial Chaos for Nonlinear Random Oscillators
,”
SIAM J. Sci. Comput. (USA)
,
26
(
2
), pp.
720
735
.10.1137/S1064827503427984
37.
Hosder
,
S.
,
Walters
,
R. W.
, and
Perez
,
R.
,
2006
, “
A Non-Intrusive Polynomial Chaos Method for Uncertainty Propagation in CFD Simulations
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, January 9–12,
AIAA
Paper No. 2006-891.10.2514/6.2006-891
38.
Walters
,
R., W.
,
2003
, “
Towards Stochastic Fluid Mechanics Via Polynomial Chaos
,”
41st AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, January 6–9,
AIAA
Paper No. 2003-0413.10.2514/6.2003-413
39.
Hosder
,
S.
,
Walters
,
R. W.
, and
Balch
,
M.
,
2008
, “
Efficient Uncertainty Quantification Applied to the Aeroelastic Analysis of a Transonic Wing
,”
46th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, January 7–10,
AIAA
Paper No. 2008-729.10.2514/6.2008-729
40.
Le Maître
,
O. P.
,
Knio
,
O. M.
,
Najm
,
H. N.
, and
Ghanem
,
R. G.
,
2001
, “
A Stochastic Projection Method for Fluid Flow: I. Basic Formulation
,”
J. Comput. Phys.
,
173
(
2
), pp.
481
511
.10.1006/jcph.2001.6889
41.
Ganappathysubramanian
,
B.
, and
Zabaras
,
N.
,
2007
, “
Sparse Grid Collocation Schemes for Stochastic Natural Convection Problems
,”
J. Comput. Phys.
,
225
, pp.
652
685
.10.1016/j.jcp.2006.12.014
42.
Gerstner
,
T.
, and
Griebel
,
M.
,
1998
, “
Numerical Integration Using Sparse Grids
,”
Numer. Algorithms
,
18
, pp.
209
232
.10.1023/A:1019129717644
43.
Xiu
,
D. B.
, and
Hesthaven
,
J. S.
,
2005
, “
High-Order Collocation Methods for Differential Equations With Random Inputs
,”
SIAM J. Sci. Comput. (USA)
,
27
, pp.
1118
1139
.10.1137/040615201
44.
Millman
,
D. R.
,
King
,
P. I.
, and
Beran
,
P. S.
,
2003
, “
A Stochastic Approach for Predicting Bifurcation of a Pitch and Plunge Airfoil
,”
21st AIAA Applied Aerodynamics Conference
,
Orlando
, FL, June 23–26,
AIAA
Paper No. 2003-3515.10.2514/6.2003-3515
45.
Cameron
,
R. H.
, and
Martin
,
W. T.
,
1947
, “
The Orthogonal Development of Nonlinear Functionals in Series of Fourier–Hermite Functionals
,”
Ann. Math.
,
48
, pp.
385
392
.10.2307/1969178
46.
Millman
,
D. R.
,
2004
, “
Quantifying Initial Conditions and Parametric Uncertainties in a Nonlinear Aeroelastic System With an Efficient Stochastic Algorithm
,” Ph.D. thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH.
47.
Desai
,
A.
, and
Sarkar
,
S.
,
2010
, “
Uncertainty Quantification and Bifurcation Behavior of an Aeroelastic System
,”
ASME 7th International Symposium on Fluid-Structure Interations, Flow-Sound Interactions, and Flow-Induced Vibration and Noise
,
Montreal, Canada
, August 1–5,
ASME
Paper No. FEDSM-ICNMM2010-30050.10.1115/FEDSM-ICNMM2010-30050
48.
Witteveen
,
J. A. S.
, and
Bijl
,
H.
,
2009
, “
A TVD Uncertainty Quantification Method With Bounded Error Applied to Transonic Airfoil Flutter
,”
Comm. Comp. Phys.
,
6
, pp.
406
432
.10.4208/cicp.2009.v6.p403
You do not currently have access to this content.