A new model for a gas-filled encapsulated thermal-acoustic transducer, which uses newly devised carbon nanotube (CNT) thin film is developed and the exact and approximate solutions are derived. A comparison between theoretical prediction and experimental data is presented and excellent agreement is reported. The frequency response for this acoustic transducer is investigated and the acoustic response of as a function of window–thin-film distance of the encapsulated transducer is discussed. An optimal distance between window and thin film is successfully derived and used in some practical examples. Resonance takes place for a suitable input frequency, and thus such transducers can be used to either generate acoustic waves of specific frequency or to filter specific resonant frequencies from a wide spectrum of signals. This kind of transducer can be immersed in different liquid media. A gaseous medium shows better performance at lower frequency while it is otherwise for a liquid medium. The conclusions derived in this work could be regarded as effective guidelines and information for enhancing thermal-acoustics efficiency conversion, as well as for the optimal design of a thermal-acoustic transducer.

References

References
1.
Bédard
,
M.
, and
Berry
,
A.
,
2008
, “
Development of a Directivity-Controlled Piezoelectric Transducer for Sound Reproduction
,”
J. Sound Vib.
,
311
(
3–5
), pp.
1271
1285
.10.1016/j.jsv.2007.10.016
2.
Sun
,
J. Q.
,
Norris
,
M. A.
,
Rossetti
,
D. J.
, and
Highfill
,
J. H.
,
1996
, “
Distributed Piezoelectric Actuators for Shell Interior Noise Control
,”
ASME J. Vibr. Acoust.
,
118
(
4
), pp.
676
681
.10.1115/1.2888351
3.
Preumont
,
A.
,
Francois
,
A.
, and
Dubru
,
S.
,
1999
, “
Piezoelectric Array Sensing for Real-Time, Broad-Band Sound Radiation Measurement
,”
ASME J. Vibr. Acoust.
,
121
(
4
), pp.
446
452
.10.1115/1.2894001
4.
Bailo
,
K. C.
,
Brei
,
D. E.
, and
Grosh
,
K.
,
2003
, “
Investigation of Curved Polymeric Piezoelectric Active Diaphragms
,”
ASME J. Vibr. Acoust.
,
125
(
2
), pp.
145
154
.10.1115/1.1547461
5.
Arnold
,
H. D.
, and
Crandall
,
I. B.
,
1917
, “
The Thermophone as a Precision Source of Sound
,”
Phys. Rev.
,
10
(
1
), pp.
22
38
.10.1103/PhysRev.10.22
6.
Xiao
,
L.
,
Chen
,
Z.
,
Feng
,
C.
,
Liu
,
L.
,
Bai
,
Z.-Q.
,
Wang
,
Y.
,
Qian
,
L.
,
Zhang
,
Y.
,
Li
,
Q.
,
Jiang
,
K.
, and
Fan
,
S.
,
2008
, “
Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers
,”
Nano Lett.
,
8
(
12
), pp.
4539
4545
.10.1021/nl802750z
7.
Venkatasubramanian
,
R.
,
2010
, “
Applied Physics: Nanothermal Trumpets
,”
Nature
,
463
(
7281
), pp.
619
619
.10.1038/463619a
8.
Shinoda
,
H.
, Nakajima, T.,
Ueno
,
K.
, and
Koshida
,
N.
,
1999
, “
Thermally Induced Ultrasonic Emission From Porous Silicon
,”
Nature
,
400
(
6747
), pp.
853
855
.10.1038/23664
9.
Liu
,
K.
,
Sun
,
Y.
,
Chen
,
L.
,
Feng
,
C.
,
Feng
,
X.
,
Jiang
,
K.
,
Zhao
,
Y.
, and
Fan
,
S.
,
2008
, “
Controlled Growth of Super-Aligned Carbon Nanotube Arrays for Spinning Continuous Unidirectional Sheets With Tunable Physical Properties
,”
Nano Lett.
,
8
(
2
), pp.
700
705
.10.1021/nl0723073
10.
Aliev
,
A. E.
,
Lima
,
M. D.
,
Fang
,
S.
, and
Baughman
,
R. H.
,
2010
, “
Underwater Sound Generation Using Carbon Nanotube Projectors
,”
Nano Lett.
,
10
(
7
), pp.
2374
2380
.10.1021/nl100235n
11.
Kozlov
,
M. E.
,
Haines
,
C. S.
,
Oh
,
J.
,
Lima
,
M. D.
, and
Fang
,
S.
,
2009
, “
Sound of Carbon Nanotube Assemblies
,”
J. Appl. Phys.
,
106
(
12
), p.
124311
.10.1063/1.3272691
12.
Tian
,
H.
,
Ren
,
T.-L.
,
Xie
,
D.
,
Wang
,
Y.-F.
,
Zhou
,
C.-J.
,
Feng
,
T.-T.
,
Fu
,
D.
,
Yang
,
Y.
,
Peng
,
P.-G.
,
Wang
,
L.-G.
, and
Liu
,
L.-T.
,
2011
, “
Graphene-on-Paper Sound Source Devices
,”
ACS Nano
,
5
(
6
), pp.
4878
4885
.10.1021/nn2009535
13.
Niskanen
,
A. O.
,
Hassel
,
J.
,
Tikander
,
M.
,
Maijala
,
P.
,
Gronberg
,
L.
, and
Helisto
,
P.
,
2009
, “
Suspended Metal Wire Array as a Thermoacoustic Sound Source
,”
Appl. Phys. Lett.
,
95
(
16
), p.
163102
.10.1063/1.3249770
14.
Vesterinen
,
V.
,
Niskanen
,
A. O.
,
Hassel
,
J.
, and
Helistö
,
P.
,
2010
, “
Fundamental Efficiency of Nanothermophones: Modeling and Experiments
,”
Nano Lett.
,
10
(
12
), pp.
5020
5024
.10.1021/nl1031869
15.
Xiao
,
L.
,
Liu
,
P.
,
Liu
,
L.
,
Li
,
Q.
,
Feng
,
Z.
,
Fan
,
S.
, and
Jiang
,
K.
,
2011
, “
High Frequency Response of Carbon Nanotube Thin Film Speaker in Gases
,”
J. Appl. Phys.
,
110
(
8
), p.
084311
.10.1063/1.3651374
16.
Hu
,
H.
,
Zhu
,
T.
, and
Xu
,
J.
,
2010
, “
Model for Thermoacoustic Emission From Solids
,”
Appl. Phys. Lett.
,
96
(
21
), p.
214101
.10.1063/1.3435429
17.
Aliev
,
A. E.
,
Lima
,
M. D.
,
Fang
,
S.
, and
Baughman
,
R. H.
,
2010
, “
Supporting Online Materials for Underwater Sound Generation Using Carbon Nanotube Projectors
,”
Nano Lett.
,
10
(
7
), pp.
2374
2380
.10.1021/nl100235n
18.
Lim
,
C. W.
,
Tong
,
L. H.
, and
Li
,
Y. C.
,
2013
, “
Theory of Suspended Carbon Nanotube Thin Film as a Thermal-Acoustic Source
,”
J. Sound Vib.
(in press).
19.
McDonald
,
F. A.
, and
Wetsel
,
J. G. C.
,
1978
, “
Generalized Theory of the Photoacoustic Effect
,”
J. Appl. Phys.
,
49
(
4
), pp.
2313
2322
.10.1063/1.325116
20.
Xiao
,
L. C. Z.
,
Chen
,
Z.
,
Feng
,
C.
,
Liu
,
L.
,
Bai
,
Z. Q.
,
Wang
,
Y.
,
Qian
,
L.
,
Zhang
,
Y. Y.
,
Li
,
Q.
,
Jiang
,
K. L.
, and
Fan
,
S.
,
2008
, “
Supporting Online Materials for Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers
,”
Nano Lett.
,
8
(
12
), pp.
4539
4545
.10.1021/nl802750z
21.
Rosencwaig
,
A.
, and
Gersho
,
A.
,
1976
, “
Theory of the Photoacoustic Effect With Solids
,”
J. Appl. Phys.
,
47
(
1
), pp.
64
69
.10.1063/1.322296
22.
Hanping
,
H.
,
Wang
,
Y.
,
And Wang
,
Z.
,
2012
, “
Wideband Flat Frequency Response of Thermo-Acoustic Emission
,”
J. Phys. D: Appl. Phys.
,
45
, p.
345401
10.1088/0022-3727/45/34/345401
23.
Aamodt
,
L. C.
,
Murphy
,
J. C.
, and
Parker
,
J. G.
,
1977
, “
Size Considerations in the Design of Cells for Photoacoustic Spectroscopy
,”
J. Appl. Phys.
,
48
(
3
), pp.
927
933
.10.1063/1.323710
24.
Paul
,
O.
, and
Baltes
,
H.
,
1999
, “
Mechanical Behavior and Sound Generation Efficiency of Prestressed, Elastically Clamped and Thermomechanically Driven Thin Film Sandwiches
,”
J. Micromech. Microeng.
,
9
, pp.
19
29
.10.1088/0960-1317/9/1/002
25.
Wikipedia, 2013, “Titanium,” http://en.wikipedia.org/wiki/Titanium
26.
El-Cat, Inc., 2008, “Properties of Silicon and Silicon Wafers,” http://www.phy.duke.edu/~hx3/physics/silicon/silicon.htm
27.
Barnard
,
G. R.
,
Bardin
,
J. L.
, and
Whiteley
,
J. W.
,
1975
, “
Acoustic Reflection and Transmission Characteristics for Thin Plates
,”
J. Acoust. Soc. Am.
,
57
(
3
), pp.
577
584
.10.1121/1.380486
28.
Leissa
,
A. W.
,
1969
,
Vibration of Plates, Scientific and Technical Information Division, National Aeronautics and Space Administration
,
U.S. GPO
,
Washington, D.C
.
29.
Ventsel
,
E.
,
2001
,
Thin Plates and Shells: Theory, Analysis, and Applications
,
Marcel Dekker
,
New York
.
You do not currently have access to this content.