To calculate the probability density function of the response of a random acoustic field, a change-of-variable perturbation stochastic finite element method (CVPSFEM), which integrates the perturbation stochastic finite element method (PSFEM) and the change-of-variable technique in a unified form, is proposed. In the proposed method, the response of a random acoustic field is approximated as a linear function of the random variables based on a first order stochastic perturbation analysis. According to the linear relationship between the response and the random variables, the formal expression of the probability density function of the response of a random acoustic field is obtained by the change-of-variable technique. The numerical examples on a two-dimensional (2D) acoustic tube and a three-dimensional (3D) acoustic cavity of an automobile cabin verify the accuracy and efficiency of the proposed method. Hence, the proposed method can be considered as an effective method to quantify the effects of the parametric randomness of a random acoustic field on the sound pressure response.

References

References
1.
Harari
,
I.
,
2006
, “
A Survey of Finite Element Methods for Time-Harmonic Acoustics
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
13–16
), pp.
1594
1607
.10.1016/j.cma.2005.05.030
2.
James
,
K. R.
, and
Dowling
,
D. R.
,
2008
, “
A Method for Approximating Acoustic-Field-Amplitude Uncertainty Caused by Environmental Uncertainties
,”
J. Acoust. Soc. Am.
,
124
(
3
), pp.
1465
1476
.10.1121/1.2950088
3.
Heaney
,
K. D.
, and
Cox
,
H.
,
2006
, “
A Tactical Approach to Environmental Uncertainty and Sensitivity
,”
IEEE J. Ocean. Eng.
,
31
(
2
), pp.
356
367
.10.1109/JOE.2006.875105
4.
Finette
,
S.
,
2009
, “
A Stochastic Response Surface Formulation of Acoustic Propagation Through an Uncertain Ocean Waveguide Environment
,”
J. Acoust. Soc. Am.
,
126
(
5
), pp.
2242
2247
.10.1121/1.3212918
5.
Khine
,
Y. Y.
,
Creamer
,
D. B.
, and
Finette
,
S.
,
2010
, “
Acoustic Propagation in an Uncertain Waveguide Environment Using Stochastic Basis Expansions
,”
J. Comput. Acoust.
,
18
(
4
), pp.
397
441
.10.1142/S0218396X10004255
6.
James
,
K. R.
, and
Dowling
,
D. R.
,
2011
, “
Pekeris Waveguide Comparisons of Methods for Predicting Acoustic Field Amplitude Uncertainty Caused by a Spatially Uniform Environmental Uncertainty (L)
,”
J. Acoust. Soc. Am.
,
129
(
3
), pp.
589
592
.10.1121/1.3531814
7.
Hayward
,
T. J.
, and
Dhakal
,
S.
,
2012
, “
Acoustic Field and Array Response Uncertainties in Stratified Ocean Media
,”
J. Acoust. Soc. Am.
,
132
(
1
), pp.
56
68
.10.1121/1.4728227
8.
Stefanou
,
G.
,
2009
, “
The Stochastic Finite Element Method: Past, Present and Future
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
9–11
), pp.
1031
1051
.10.1016/j.cma.2008.11.007
9.
Adhikari
,
S.
,
2011
, “
Doubly Spectral Stochastic Finite–Element Method for Linear Structural Dynamics
,”
ASCE J. Aerosp. Eng.
,
24
(
2
), pp.
264
276
.10.1061/(ASCE)AS.1943-5525.0000070
10.
Tootkaboni
,
M.
,
Asadpoure
,
A.
, and
Guest
,
J. K.
,
2012
, “
Topology Optimization of Continuum Structures Under Uncertainty—A Polynomial Chaos Approach
,”
Comput. Methods Appl. Mech. Eng.
,
201–204
, pp.
263
275
.10.1016/j.cma.2011.09.009
11.
Sarrouy
,
E.
,
Dessombz
,
O.
, and
Sinou
,
J. J.
,
2012
, “
Stochastic Analysis of the Eigenvalue Problem for Mechanical Systems Using Polynomial Chaos Expansion—Application to a Finite Element Rotor
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
051009
.10.1115/1.4005842
12.
Doltsinis
,
I.
, and
Kang
,
Z.
,
2006
, “
Perturbation-Based Stochastic FE Analysis and Robust Design of Inelastic Deformation Processes
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
19–22
), pp.
2231
2251
.10.1016/j.cma.2005.05.004
13.
Kamínski
,
M.
,
2008
, “
On Stochastic Finite Element Method for Linear Elastostatics by the Taylor Expansion
,”
Struct. Multidiscip. Optimiz.
,
35
(
3
), pp.
213
223
.10.1007/s00158-007-0146-y
14.
Ichchou
,
M. N.
,
Bouchoucha
,
F.
,
Ben Souf
,
M. A.
,
Dessombz
,
O.
, and
Haddar
,
M.
,
2011
, “
Stochastic Wave Finite Element for Random Periodic Media Through First-Order Perturbation
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
41–44
), pp.
2805
2813
.10.1016/j.cma.2011.05.004
15.
Dash
,
P.
, and
Singh
,
B. N.
,
2012
, “
Geometrically Nonlinear Free Vibration of Laminated Composite Plate Embedded With Piezoelectric Layers Having Uncertain Material Properties
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
061006
.10.1115/1.4006757
16.
Kamínski
,
M.
,
2012
, “
Probabilistic Entropy in Homogenization of the Periodic Fiber-Reinforced Composites With Random Elastic Parameters
,”
Int. J. Numer. Methods Eng.
,
90
(
8
), pp.
939
954
.10.1002/nme.3350
17.
Lazarov
,
B. S.
,
Schevenels
,
M.
, and
Sigmund
O.
,
2012
, “
Topology Optimization With Geometric Uncertainties by Perturbation Techniques
,”
Int. J. Numer. Methods Eng.
,
90
(
11
), pp.
1321
1336
.10.1002/nme.3361
18.
Rong
,
B.
,
Rui
,
X.
, and
Tao
,
L.
,
2012
, “
Perturbation Finite Element Transfer Matrix Method for Random Eigenvalue Problems of Uncertain Structures
,”
ASME J. Appl. Mech.
,
79
(
2
), p.
021005
.10.1115/1.4005574
19.
Kamínski
,
M.
, and
Solecka
,
M.
,
2013
, “
Optimization of the Truss-Type Structures Using the Generalized Perturbation-Based Stochastic Finite Element Method
,”
Finite Elem. Anal. Des.
,
63
, pp.
69
79
.10.1016/j.finel.2012.08.002
20.
Culla
,
A.
, and
Carcaterra
,
A.
,
2007
, “
Statistical Moments Predictions for a Moored Floating Body Oscillating in Random Waves
,”
J. Sound Vib.
,
308
(
1–2
), pp.
44
66
.10.1016/j.jsv.2007.07.018
21.
Hua
,
X. G.
,
Ni
,
Y. Q.
,
Chen
,
Z. Q.
, and
Ko
,
J. M.
,
2007
, “
An Improved Perturbation Method for Stochastic Finite Element Model Updating
,”
Int. J. Numer. Methods Eng.
,
73
(
13
), pp.
1845
1864
.10.1002/nme.2151
22.
Panayirci
,
H. M.
, and
Schuëller
,
G. I.
,
2011
, “
On the Capabilities of the Polynomial Chaos Expansion Method Within SFE Analysis—An Overview
,”
Arch. Comput. Methods Eng.
,
18
(
1
), pp.
43
55
.10.1007/s11831-011-9058-5
23.
Papadimitriou
,
C.
,
Katafygiotis
,
L. S.
, and
Beck
,
J. L.
,
1995
, “
Approximate Analysis of Response Variability of Uncertain Linear Systems
,”
Prob. Eng. Mech.
,
10
(
4
), pp.
251
264
.10.1016/0266-8920(95)00020-8
24.
Papoulis
,
A.
, and
Pillai
,
S. U.
,
2002
,
Probability, Random Variables and Stochastic Processes
,
McGraw-Hill
,
Boston
.
25.
Kleiber
,
M.
, and
Hien
,
T. D.
,
1992
,
The Stochastic Finite Element Method
,
John Wiley
,
New York
.
You do not currently have access to this content.