This paper reports a bearing fault detection method based on kurtosis-based adaptive bandstop filtering (KABS) and iterative autocorrelation (IAC). The interferences in the bearing signal can be removed by KABS filtering, whereas IAC is employed for noise reduction and signal enhancement. In the KABS method, two window-merging schemes are proposed to identify the frequency bands potentially containing interferences and to preserve those covering fault frequencies. Issues related to the selection of the number of autocorrection iterations are also discussed. The proposed method can be used for bearing fault detection in a low signal-to-noise ratio (SNR) and low signal-to-interference ratio (SIR) environment. The implementation of the proposed method does not require prior knowledge of the fault-excited resonant frequency. The performance of the proposed method has been examined by simulation analysis, with favorable comparisons to the Hilbert enveloping, energy operator, and spectrum kurtosis methods. Its effectiveness in bearing fault detection has also been demonstrated using experimental data.

References

References
1.
McInerny
,
S. A.
, and
Dai
,
Y.
,
2003
, “
Basic Vibration Signal Processing for Bearing Fault Detection
,”
IEEE Trans. Educ.
,
46
, pp.
149
156
.10.1109/TE.2002.808234
2.
Bozchalooi
,
I. S.
, and
Liang
,
M.
,
2008
, “
A Joint Resonance Frequency Estimation and In-Band Noise Reduction Method for Enhancing the Detectability of Bearing Fault Signals
,”
Mech. Syst. Signal Process.
,
22
, pp.
915
933
.10.1016/j.ymssp.2007.10.006
3.
Bozchalooi.
I. S.
, and
Liang
,
M.
,
2009
, “
Parameter-Free Bearing Fault Detection Based on Maximum Likelihood Estimation and Differentiation
,”
Meas. Sci. Technol.
,
20
, p.
065102
.10.1088/0957-0233/20/6/065102
4.
Liang
,
M.
, and
Bozchalooi
,
I. S.
,
2010
, “
An Energy Operator Approach to Joint Application of Amplitude and Frequency-Demodulations for Bearing Fault Detection
,”
Mech. Syst. Signal Process.
,
24
, pp.
1473
1494
.10.1016/j.ymssp.2009.12.007
5.
Lin
,
J.
, and
Zuo
,
M.
,
2003
, “
Gearbox Fault Diagnosis Using Adaptive Wavelet Filter
,”
Mech. Syst. Signal Process.
,
17
, pp.
1259
1269
.10.1006/mssp.2002.1507
6.
Qiu
,
H.
,
Lee
,
J.
,
Lin
,
J.
, and
Yu
,
G.
,
2006
, “
Wavelet Filter-Based Weak Signature Detection Method and Its Application on Rolling Element Bearing Prognosis
,”
J. Sound Vib.
,
289
, pp.
1066
1090
.10.1016/j.jsv.2005.03.007
7.
Bozchalooi
,
I. S.
, and
Liang
,
M.
,
2007
, “
A Smoothness Index-Guided Approach to Wavelet Parameter Selection in Signal De-Noising and Fault Detection
,”
J. Sound Vib.
,
308
, pp.
246
267
.10.1016/j.jsv.2007.07.038
8.
Immovilli
,
F.
,
Cocconcelli
,
M.
,
Bellini
,
A.
, and
Rubini
,
R.
,
2009
, “
Detection of Generalized-Roughness Bearing Fault by Spectral-Kurtosis Energy of Vibration or Current Signals
,”
IEEE Trans. Ind. Electron.
,
56
, pp.
4710
4717
.10.1109/TIE.2009.2025288
9.
Combet
,
F.
, and
Gelman
,
L.
,
2009
, “
Optimal Filtering of Gear Signals for Early Damage Detection Based on the Spectral Kurtosis
,”
Mech. Syst. Signal Process.
,
23
, pp.
652
668
.10.1016/j.ymssp.2008.08.002
10.
Antoni
,
J.
,
2006
, “
The Spectral Kurtosis: A Useful Tool for Characterizing Non-Stationary Signals
,”
Mech. Syst. Signal Process.
,
20
, pp.
282
307
.10.1016/j.ymssp.2004.09.001
11.
Wang
,
Y. X.
, and
Liang
,
M.
,
2010
, “
An Adaptive SK Technique and Its Application for Fault Detection of Rolling Element Bearings
,”
Mech. Syst. Signal Process.
,
25
, pp.
1750
1764
.10.1016/j.ymssp.2010.12.008
12.
Donoho
,
D. L.
,
1995
, “
De-Noising by Soft-Thresholding
,”
IEEE Trans. Inf. Theory
,
41
, pp.
613
627
.10.1109/18.382009
13.
Donoho
,
D. L.
, and
Johnstone
,
I. M.
,
1994
, “
Ideal Spatial Adaptation Via Wavelet Shrinkage
,”
Biometrika
,
81
, pp.
425
455
.10.1093/biomet/81.3.425
14.
Qiu
,
H.
,
Lee
,
J.
,
Lin
,
J.
, and
Yu
,
G.
,
2003
, “
Robust Performance Degradation Assessment Methods for Enhanced Rolling Element Bearing Prognostics
,”
Adv. Eng. Inf.
,
17
, pp.
127
140
.10.1016/j.aei.2004.08.001
15.
Lin
,
J.
,
Zuo
,
M.
, and
Fyfe
,
K.
,
2004
, “
Mechanical Fault Detection Based on the Wavelet De-Noising Technique
,”
ASME J. Vibr. Acoust.
,
126
, pp.
9
16
.10.1115/1.1596552
16.
Rafieea
,
J.
, and
Tse
,
P. W.
,
2009
, “
Use of Autocorrelation of Wavelet Coefficients for Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
23
, pp.
1554
1572
.10.1016/j.ymssp.2009.02.008
17.
Hong
,
H. B.
,
2007
, “
Rotating Machinery Monitoring: Feature Extraction, Signal Separation, and Fault Severity Evaluation
,” Ph.D. thesis,
University of Ottawa
,
Ottawa
, Canada.
18.
Wang
,
Y.
,
Jin
,
L.
,
Yao
,
M.
, and
Yin
,
Q.
,
1999
, “
Research on Performance of Suppressing Noise by Cyclic Auto-Correlation Function
,”
J. Data Acquis. Process.
,
14
, pp.
148
152
.10.3969/j.issn.1004-9037.1999.02.004
19.
Li
,
Y. B.
,
Yue
,
X.
, and
Yang
,
X. Y.
,
2004
, “
Estimation of Sinusoidal Parameters in Powerful Noise by Multi-Layer Autocorrelation
,”
J. Harbin Eng. Univ.
,
25
, pp.
525
528
.10.3969/j.issn.1006-7043.2004.04.027
20.
Zheng
,
Z. W.
, and
Zhang
,
F.
,
2010
, “
Comparative Study on Weak Signal Detection Algorithms
,”
International Conference on E-Business and E-Government
(
ICEE2010
), Guangzhou, China, May 7–9, pp.
3825
3828
.10.1109/ICEE.2010.959
21.
Rudoy
,
D.
,
Basu
,
P.
,
Quatieri
,
T. F.
,
Dunn
,
B.
, and
Wolfe
,
P. J.
,
2008
, “
Adaptive Short-Time Analysis-Synthesis for Speech Enhancement
,”
IEEE International Conference on Acoustics, Speech, and Signal Processing
(
ICASSP2008
), Las Vegas, NV, March 31–April 4, pp.
4905
4908
.10.1109/ICASSP.2008.4518757
22.
Pachaud
,
C.
,
Salvetat
,
R.
, and
Fray
,
C.
,
1997
, “
Crest Factor and Kurtosis Contributions to Identify Defects Inducing Periodical Impulsive Forces
,”
Mech. Syst. Signal Process.
,
11
, pp.
903
916
.10.1006/mssp.1997.0115
23.
Morgenstern
,
J.
,
1973
, “
Note on a Lower Bound of the Linear Complexity of the Fast Fourier Transform
,”
J. ACM
,
20
, pp.
305
306
.10.1145/321752.321761
24.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
1992
,
Numerical Recipes in C: The Art of Scientific Computing
,
2nd ed.
,
Cambridge University
,
Cambridge, UK
, pp.
545
546
.
You do not currently have access to this content.