The inverse method based on the numerical solution of Laplace's equation is introduced for the design of acoustic metamaterial devices. An arbitrary shaped acoustic concentrator and an external cloak are designed numerically and validated by full wave simulation. Besides, an acoustic reciprocal cloak and a field rotator are proposed. Compared with the analytical method, the inverse method is much more universal, and arbitrary shaped acoustic metamaterial devices can be flexibly designed without any knowledge of the transformation equations.

References

References
1.
Shelby
,
R. A.
,
Smith
,
D. R.
, and
Schultz
, S.,
2001
, “
Experimental Verification of a Negative Index of Refraction
,”
Science
,
292
, pp.
77
79
.10.1126/science.1058847
2.
Pendry
,
J. B.
,
2000
, “
Negative Refraction Makes a Perfect Lens
,”
Phys. Rev. Lett.
,
85
, pp.
3966
3969
.10.1103/PhysRevLett.85.3966
3.
Al-Naib
,
A. I.
,
Jansen
,
C.
, and
Koch
,
M.
,
2008
, “
Thin-Film Sensing With Planar Asymmetric Metamaterial Resonators
,”
Appl. Phys. Lett.
,
93
, p.
083507
.10.1063/1.2976636
4.
Yang
,
J. J.
,
Huang
,
M.
,
Yu
,
J.
, and
Lan
,
Y. Z.
,
2011
, “
Surface Whispering-Gallery Mode
,”
Europhys. Lett.
,
96
, p.
57003
.10.1209/0295-5075/96/57003
5.
Huang
,
M.
, and
Yang
,
J. J.
,
2011
, “
Microwave Sensor Using Metamaterials
,”
Wave Propagation
,
A.
Petrin
(ed.),
InTech Inc. Press
,
Austria
, pp.
13
36
.
6.
Chen
,
P. Y.
, and
Alù
,
A.
,
2010
, “
Sub-Wavelength Elliptical Patch Antenna Loaded With μ-Negative Metamaterials
,”
IEEE Trans. Antenna. Propag.
,
58
, pp.
2909
2919
.10.1109/TAP.2010.2052578
7.
Zheludev
,
N. I.
,
2010
, “
The Road Ahead for Metamaterials
,”
Science
,
328
, pp.
582
853
.10.1126/science.1186756
8.
Zhu
,
R.
,
Huang
,
G. L.
, and
Hu
,
G. K.
,
2012
, “
Effective Dynamic Properties and Multi-Resonant Design of Acoustic Metamaterials
,”
ASME J. Vib. Acoust.
,
134
, p.
031006
.10.1115/1.4005825
9.
Huang
,
G. L.
, and
Sun
,
C. T.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust.
,
132
, p.
031003
.10.1115/1.4000784
10.
Pendry
,
J. B.
,
Schurig
,
D.
, and
Smith
,
D. R.
,
2006
, “
Controlling Electromagnetic Fields
,”
Science
,
312
, pp.
1780
1782
.10.1126/science.1125907
11.
Leonhardt
,
U.
,
2006
, “
Optical Conformal Mapping
,”
Science
,
312
, pp.
1777
1780
.10.1126/science.1126493
12.
Schurig
,
D.
,
Mock
,
J. J.
,
Justice
,
B. J.
,
Cummer
,
S. A.
,
Pendry
,
J. B.
,
Starr
,
A. F.
, and
Smith
,
D. R.
,
2006
, “
Metamaterial Electromagnetic Cloak at Microwave Frequencies
,”
Science
,
314
, pp.
977
979
.10.1126/science.1133628
13.
Liu
,
R.
,
Ji
,
C.
,
Mock
,
J. J.
,
Chin
,
J. Y.
,
Cui
,
T. J.
,
Smith
,
D. R.
,
2009
, “
Broadband Ground-Plane Cloak
,”
Science
,
323
, pp.
366
369
.10.1126/science.1166949
14.
Liu
,
X.
,
Li
,
C.
,
Yao
,
K.
,
Meng
,
X.
,
Feng
,
W.
,
Wu
,
B.
, and
Li
,
F.
,
2009
, “
Experimental Verification of Broadband Invisibility Using a Cloak Based on Inductor-Capacitor Networks
,”
Appl. Phys. Lett.
,
95
, p.
191107
.10.1063/1.3263149
15.
Yang
,
J. J.
,
Huang
,
M.
,
Yang
,
C. F.
, and
Yu
,
J.
,
2011
, “
Reciprocal Invisibility Cloak Based on Complementary Media
,”
Eur. Phys. J. D.
,
61
, pp.
731
736
.10.1140/epjd/e2010-10507-2
16.
Yang
,
J. J.
,
Huang
,
M.
,
Yang
,
C. F.
,
Xiao
,
Z.
, and
Peng
,
J. H.
,
2009
, “
Metamaterial Electromagnetic Concentrators With Arbitrary Geometries
,”
Opt. Express
,
17
, pp.
19656
19661
.10.1364/OE.17.019656
17.
Yang
,
C. F.
,
Yang
,
J. J.
,
Huang
,
M.
,
Xiao
,
Z.
, and
Peng
,
J. H.
,
2011
, “
An External Cloak With Arbitrary Cross Section Based on Complementary Medium and Coordinate Transformation
,”
Opt. Express
,
19
, pp.
1147
1156
.10.1364/OE.19.001147
18.
Jiang
,
W. X.
,
Cui
,
T. J.
,
Yang
,
X. M.
,
Ma
,
H. F.
, and
Cheng
,
Q.
,
2011
, “
Shrinking an Arbitrary Object as One Desires Using Metamaterials
,”
Appl. Phys. Lett.
,
98
, p.
204101
.10.1063/1.3590203
19.
Rahm
,
M.
,
Cummer
,
S. A.
,
Schurig
,
D.
,
Pendry
,
J. B.
, and
Smith
,
D. R.
,
2008
, “
Optical Design of Reflectionless Complex Media by Finite Embedded Coordinate Transformations
,”
Phys. Rev. Lett.
,
100
, p.
063903
.10.1103/PhysRevLett.100.063903
20.
Chen
,
H.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2010
, “
Transformation Optics and Metamaterials
,”
Nature Mater.
,
9
, pp.
387
396
.10.1038/nmat2743
21.
Chen
,
H. Y.
, and
Chan
,
C. T.
,
2007
, “
Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
91
, p.
183518
.10.1063/1.2803315
22.
Cummer
,
S. A.
,
Popa
,
B.
,
Schurig
,
D.
,
Smith
,
D. R.
,
Pendry
,
J.
,
Rahm
,
M.
, and
Starr
,
A.
,
2008
, “
Scattering Theory Derivation of a 3D Acoustic Cloaking Shell
,”
Phys. Rev. Lett.
,
100
, p.
024301
.10.1103/PhysRevLett.100.024301
23.
Chen
,
H. Y.
, and
Chan
,
C. T.
,
2010
, “
Acoustic Cloaking and Transformation Acoustics
,”
J. Phys. D: Appl. Phys.
,
43
, p.
113001
.10.1088/0022-3727/43/11/113001
24.
Norris
,
A. N.
,
2009
, “
Acoustic Metafluids
,”
J. Acoust. Soc. Am.
,
125
, pp.
839
849
.10.1121/1.3050288
25.
Popa
,
B. I.
,
Zigoneanu
,
L.
, and
Cummer
,
S. A.
,
2011
, “
Experimental Acoustic Ground Cloak in Air
,”
Phys. Rev. Lett.
,
106
, p.
253901
.10.1103/PhysRevLett.106.253901
26.
Zhou
,
X.
, and
Hu
,
G.
,
2006
, “
Design for Electromagnetic Wave Transparency With Metamaterials
,”
Phys. Rev. E
,
74
, p.
026607
.10.1103/PhysRevE.74.026607
27.
Liu
,
B.
, and
Huang
,
J. P.
,
2009
, “
Acoustically Conceal an Object With Hearing
,”
Eur. Phys. J. Appl. Phys.
,
48
, p.
20501
.10.1051/epjap/2009127
28.
Zhu
,
X.
,
Liang
,
B.
,
Kan
,
W.
,
Zou
,
X.
, and
Cheng
,
J.
,
2011
, “
Acoustic Cloaking by a Superlens With Single-Negative Materials
,”
Phys. Rev. Lett.
,
106
, p.
014301
.10.1103/PhysRevLett.106.014301
29.
Yang
,
J. J.
,
Huang
,
M.
,
Yang
,
C.
,
Peng
,
J. H.
, and
Jun
,
C.
,
2010
, “
An External Acoustic Cloak With N-Sided Regular Polygonal Cross Section Based on Complementary Medium
,”
Comp. Mater. Sci.
,
49
, pp.
9
14
.10.1016/j.commatsci.2010.03.050
30.
Yang
,
J. J.
,
Huang
,
M.
,
Yang
,
C. F.
, and
Cai
,
G. H.
,
2011
, “
A Metamaterial Acoustic Concentrator With Regular Polygonal Cross Section
,”
ASME J. Vib. Acoust.
,
133
, p.
061016
.10.1115/1.4004678
31.
Yang
,
T.
,
Cao
,
R. F.
,
Luo
,
X. D.
, and
Ma
,
H. R.
,
2010
, “
Acoustic Superscatterer and Its Multilayer Realization
,”
Appl. Phys. A
,
99
, pp.
843
847
.10.1007/s00339-010-5609-0
32.
Ma
,
H.
,
Qu
,
S.
,
Xu
,
Z.
, and
Wang
,
J.
,
2008
, “
Numerical Method for Designing Approximate Cloaks With Arbitrary Shapes
,”
Phys. Rev. E
,
78
, p.
036608
.10.1103/PhysRevE.78.036608
33.
Chen
,
X.
,
Fu
,
Y.
, and
Yuan
,
N.
,
2009
, “
Invisible Cloak Design With Controlled Constitutive Parameters and Arbitrary Shaped Boundaries Through Helmholtz's Equation
,”
Opt. Express
,
17
, pp.
3581
3586
.10.1364/OE.17.003581
34.
Hu
,
J.
,
Zhou
,
X.
, and
Hu
,
G.
,
2009
, “
Design Method for Electromagnetic Cloak With Arbitrary Shapes Based on Laplace’s Equation
,”
Opt. Express
,
17
, pp.
1308
1320
.10.1364/OE.17.001308
35.
Hu
,
J.
,
Zhou
,
X.
, and
Hu
,
G.
,
2009
, “
A Numerical Method for Designing Acoustic Cloak With Arbitrary Shapes
,”
Comput. Mater. Sci.
,
46
, pp.
708
712
.10.1016/j.commatsci.2009.02.006
36.
Qiu
,
C. W.
,
Novitsky
,
A.
, and
Gao
,
L.
,
2010
, “
Inverse Design Mechanism of Cylindrical Cloaks Without Knowledge of the Required Coordinate Transformation
,”
J. Opt. Soc. Am. A
,
27
, pp.
1079
1082
.10.1364/JOSAA.27.001079
37.
Ding
,
Y
,
Liu
,
Z.
,
Qiu
,
C.
, and
Shi
,
J.
,
2007
, “
Metamaterial With Simultaneously Negative Bulk Modulus and Mass Density
,”
Phys. Rev. Lett.
,
99
, p.
093904
.10.1103/PhysRevLett.99.093904
38.
Christensen
,
J.
, and
García de Abajo
,
F. J.
,
2012
, “
Negative Refraction and Backward Waves in Layered Acoustic Metamaterials
,”
Phys. Rev. B
,
86
, p.
024301
.10.1103/PhysRevB.86.024301
39.
Lai
,
Y.
,
Chen
,
H.
,
Zhang
,
Z. Q.
, and,
Chan
,
C. T.
,
2009
, “
Complementary Media Invisibility Cloak That Cloaks Objects at a Distance Outside the Cloaking Shell
,”
Phys. Rev. Lett.
,
102
, p.
093901
.10.1103/PhysRevLett.102.093901
You do not currently have access to this content.