In this study, the aeroelastic stability and response of an aircraft swept composite wing in subsonic compressible flow are investigated. The composite wing was modeled as an anisotropic thin-walled composite beam with the circumferentially asymmetric stiffness structural configuration to establish proper coupling between bending and torsion. Also, the structural model consists of a number of nonclassical effects, such as transverse shear, material anisotropy, warping inhibition, nonuniform torsional model, and rotary inertia. The finite state form of the unsteady aerodynamic loads have been modeled based on the indicial aerodynamic theory and strip theory in the subsonic compressible flow. Novel Mach dependent exponential approximations of the indicial aerodynamic functions have been developed. The extended Galerkin’s method was used to construct the mass, stiffness, and damping matrices of the nonconservative aeroelastic system. Eigen analysis of the system was performed to obtain the aeroelastic instability (divergence and flutter) boundaries. Also, solving the equations of motion in the time domain leads to the aeroelastic response of wing in different flight speeds. The obtained results are compared with the available results in the literature, which reveals an excellent agreement. The numerical results obtained in this article seek to clarify the effects of geometrical and material couplings and flight Mach number on the aeroelastic instability and response of composite wings in subsonic compressible flow.

References

References
1.
Librescu
,
L.
, and
Song
,
O.
,
2006
,
Thin-Walled Composite Beams: Theory and Application
,
Springer
,
New York
.
2.
Weisshaar
,
T. A.
,
1987
, “
Aeroelastic Tailoring—Creative Use of Unusual Materials
,”
Proceedings of the AIAA/ASME/ASCE/AHS 28th Structures, Structural Dynamics, and Materials Conference
,
Monterey, CA
, April 9–10,
AIAA
Paper No. 87-0976.10.2514/6.1987-976
3.
Shirk
,
M. H.
,
Hertz
,
T. J.
, and
Weisshaar
,
T. A.
,
1986
, “
Aeroelastic Tailoring—Theory, Practice and Promise
,”
J. Aircr.
,
23
(
1
), pp.
6
18
.10.2514/3.45260
4.
Mansfield
,
E. H.
, and
Sobey
,
A. J.
,
1979
, “
The Fibre Composite Helicopter Blade—Part I: Stiffness Properties
,”
Aeronaut. Q.
,
30
(
2
), pp.
413
431
.
5.
Mansfield
,
E. H.
, and
Sobey
,
A. J.
,
1979
, “
The Fibre Composite Helicopter Blade—Part II: Prospects for Aeroelastic Tailoring
,”
Aeronaut. Q.
,
30
(
2
), pp.
432
449
.
6.
Bauchau
,
O. A.
,
1985
, “
A Beam Theory for Anisotropic Materials
,”
ASME J. Appl. Mech.
,
52
, pp.
416
422
.10.1115/1.3169063
7.
Rehfield
,
L. W.
, and
Atilgan
,
A. R.
,
1989
, “
Towards Understanding the Tailoring Mechanisms for Thin-Walled Composite Tubular Beams
,”
Proceedings of the First USSR-U.S. Symposium on Mechanics of Composite Materials, Riga, Latvia
, May 23–26,
S. W.
Tsai
,
J. M.
Whitney
,
T.-W
.
Chou
, and
R. M.
Jones
, eds.,
ASME Publication House
,
New York
, pp.
187
196
.
8.
Ganguli
,
R.
, and
Chopra
, I
.
,
1995
, “
Aeroelastic Optimization of a Helicopter Rotor With Composite Coupling
,”
J. Aircr.
,
32
(
6
), pp.
1326
1334
.10.2514/3.46882
9.
Hodges
,
D. H.
,
1990
, “
Review of Composite Rotor Blade Modeling
,”
AIAA J.
,
28
(
3
), pp.
561
565
.10.2514/3.10430
10.
Kunz
,
D. L.
,
1994
, “
Survey and Comparison of Engineering Beam Theories for Helicopter Rotor Blades
,”
J. Aircr.
,
31
(
3
), pp.
473
479
.10.2514/3.46518
11.
Jung
,
S. N.
,
Nagaraj
, V
. T.
, and
Chopra
, I
.
,
2001
, “
Refined Structural Dynamics Model for Composite Rotor Blades
,”
AIAA J.
,
39
(
2
), pp.
339
348
.10.2514/2.1310
12.
Oh
,
S.-Y.
,
Librescu
,
L.
, and
Song
,
O.
,
2005
, “
Modeling and Vibration of Thin-Walled Rotating Composite Blades Featuring Extension-Twist Elastic Coupling
,”
Aeronaut. J.
,
109
(
1095
), pp.
233
246
.
13.
Li
,
L.
,
Volovoi
, V
.
V
.
, and
Hodges
,
D. H.
,
2008
, “
Cross-Sectional Design of Composite Rotor Blades
,”
J. Am. Helicopter Soc.
,
53
(
3
), pp.
240
251
.10.4050/JAHS.53.240
14.
Chakravarty
,
U. K.
,
2011
, “
On the Modeling of Composite Beam Cross-Sections
,”
Composites, Part B
,
42
(
4
), pp.
982
991
.10.1016/j.compositesb.2010.10.012
15.
Nicholls-Lee
,
R. F.
,
Turnock
,
S. R.
, and
Boyd
,
S. W.
,
2013
, “
Application of Bend-Twist Coupled Blades for Horizontal Axis Tidal Turbines
,”
Renewable Energy
,
50
, pp.
541
550
.10.1016/j.renene.2012.06.043
16.
Bauchau
,
O. A.
,
Loewy
,
R. G.
, and
Bryan
,
P. S.
,
1986
, “
Approach to Ideal Twist Distribution in Tilt Rotor VTOL Blade Designs
,” Rensselaer Polytechnic Institute, Troy, NY, RTC Report No. D-86-2.
17.
Lake
,
R. C.
,
Nixon
,
M. W.
,
Wilbur
,
M. L.
,
Singleton
,
J. D.
, and
Mirick
,
R. H.
,
1992
, “
A Demonstration of Passive Blade Twist Control Using Extension-Twist Coupling
,”
Proceedings of the SDM Conference
,
Dallas, TX
, April 13–15,
AIAA
Paper No. 92-2468-CR.10.2514/6.1992-2468
18.
Bruhn
,
E. F.
,
1973
,
Analysis and Design of Flight Vehicle Structures
,
Jacobs Publishing
,
Indianapolis, IN
.
19.
Qin
,
Z.
,
2001
, “
Vibration and Aeroelasticity of Advanced Aircraft Wing Modeled as Thin-Walled Beams—Dynamics, Stability and Control
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
20.
Librescu
,
L.
, and
Song
,
O.
,
1991
, “
Behavior of Thin-Walled Beams Made of Advanced Composite Materials and Incorporating Non-Classical Effects
,”
ASME Appl. Mech. Rev.
,
44
(
11
), pp.
174
180
.10.1115/1.3121352
21.
Qin
,
Z.
,
Marzocca
,
P.
, and
Librescu
,
L.
,
2002
, “
Aeroelastic Instability and Response of Advanced Aircraft Wings at Subsonic Flight Speeds
,”
Aerosp. Sci. Technol.
,
6
, pp.
195
208
.10.1016/S1270-9638(02)01158-6
22.
Qin
,
Z.
, and
Librescu
,
L.
,
2003
, “
Dynamic Aeroelastic Response of Aircraft Wing Modeled as Anisotropic Thin-Walled Beams
,”
J. Aircr.
,
40
(
3
), pp.
532
543
.10.2514/2.3127
23.
Qin
,
Z.
, and
Librescu
,
L.
,
2003
, “
Aeroelastic Instability of Aircraft Wings Modelled as Anisotropic Composite Thin-Walled Beams in Incompressible Flow
,”
J. Fluids Struct.
,
18
, pp.
43
61
.10.1016/S0889-9746(03)00082-3
24.
Librescu
,
L.
, and
Marzocca
,
P.
,
2005
, “
Advances in the Linear/Nonlinear Control of Aeroelastic Structural Systems
,”
Acta Mech.
,
178
, pp.
147
186
.10.1007/s00707-005-0222-6
25.
Na
,
S. S.
,
Librescu
,
L.
,
Marzocca
,
P.
,
Yoon
,
G. C.
,
Rubillo
,
C.
, and
Bong
,
K.
,
2007
, “
Robust Aeroelastic Control of Two-Dimensional Supersonic Flapped Wing Systems
,”
Acta Mech.
,
192
, pp.
37
47
.10.1007/s00707-006-0419-3
26.
Librescu
,
L.
,
Na
,
S.
,
Qin
,
Z.
, and
Lee
,
B.
,
2008
, “
Active Aeroelastic Control of Aircraft Composite Wings Impacted by Explosive Blast
,
J. Sound Vib.
,
318
, pp.
74
92
.10.1016/j.jsv.2008.04.007
27.
Fazelzadeh
,
S. A.
,
Marzocca
,
P.
,
Mazidi
,
A.
, and
Rashidi
,
E.
,
2010
, “
Divergence and Flutter of Shear Deformable Aircraft Swept Wings Subjected to Roll Angular Velocity
,”
Acta Mech.
,
212
, pp.
151
165
.10.1007/s00707-009-0248-2
28.
Choo
,
J.
,
Yoon
,
G.
,
Song
,
J.-S.
,
Kwon
,
T.
,
Na
,
S.
, and
Qin
,
Z.
,
2012
, “
Robust Aeroelastic Control of a Thin-Walled Wing Structure With Model Uncertainty
,”
J. Aerosp. Eng.
,
25
(
2
), pp.
320
333
.10.1061/(ASCE)AS.1943-5525.0000121
29.
Na
,
S.
,
Song
,
J.
,
Choo
,
J.
, and
Qin
,
Z.
,
2011
, “
Dynamic Aeroelastic Response and Active Control of Composite Thin-Walled Beam Structures in Compressible Flow
,”
J. Sound Vib.
,
330
, pp.
4998
5013
.10.1016/j.jsv.2011.05.026
30.
Haddadpour
,
H.
, and
Firouz-abadi
,
R. D.
,
2006
, “
Evaluation of Quasi Steady Aerodynamic Modeling for Flutter Prediction of Aircraft Wings in Incompressible Flow
,”
Thin-Walled Struct.
,
44
, pp.
931
936
.10.1016/j.tws.2006.08.020
31.
Leishman
,
J.
,
1993
, “
Indicial Lift. Approximations for Two-Dimensional Subsonic Flow as Obtained From Oscillatory Measurements
,”
J. Aircr.
,
30
(
3
), pp.
340
351
.10.2514/3.46340
32.
Bisplinghoff
,
R. L.
,
Ashley
,
H.
, and
Halfman
,
R. L.
,
1996
,
Aeroelasticity
,
Dover Publications
,
New York
.
33.
Leishman
,
J. G.
,
2001
,
Principles of Helicopter Aerodynamics
,
Cambridge University
,
New York
.
34.
Dowell
,
E. H.
,
Crawley
,
E. F.
,
Curtiss
,
H. C.
,
Peters
,
D. A.
,
Scanlan
,
R. H.
, and
Sisto
,
F.
,
1995
,
A Modern Course in Aeroelasticity
,
Kluwer Academic Publisher
,
Dordrecht, The Netherlands
.
35.
Mazelsky
,
B.
,
1952
, “
Determination of Indicial Lift and Moment of a Two-Dimensional Pitching Airfoil at Subsonic Mach Numbers From Oscillatory Coefficients With Numerical Calculations for a Mach Number of 0.7
,” NACA Report No. TN 2613.
36.
Mazelsky
,
B.
, and
Drischler
,
J. A.
,
1952
, “
Numerical Determination of Indicial Lift and Moment Functions for a Two-Dimensional Sinking and Pitching Airfoil at Mach Numbers 0.5 and 0.6
,” NACA Report No. TN 2739.
37.
Dowell
,
E. H.
,
1980
, “
A Simple Method of Converting Frequency Domain Aerodynamics to the Time Domain
,” NASA Report No. TM-81844.
38.
Marzocca
,
P.
,
Librescu
,
L.
, and
Chiocchia
,
G.
,
2000
, “
Unsteady Aerodynamics in Various Flight Speed Regimes for Flutter/Dynamic Response Analyses
,”
Proceedings of the 18th AIAA Applied Aerodynamic Conference
,
Denver, CO
, August 14–17,
AIAA
Paper No. 2000-4229.10.2514/6.2000-4229
39.
Marzocca
,
P.
,
Librescu
,
L.
, and
Chiocchia
,
G.
,
2002
, “
Aeroelastic Response of a 2-D Airfoil in a Compressible Flow Field and Exposed to Blast Loading
,”
Aerosp. Sci. Technol.
,
6
(
4
), pp.
259
272
.10.1016/S1270-9638(02)01169-0
40.
Haddadpour
,
H.
,
Kouchakzadeh
,
M. A.
, and
Shadmehri
,
F.
,
2008
, “
Aeroelastic Instability of Aircraft Composite Wings in an Incompressible Flow
,”
J. Compos. Struct.
,
83
,
pp. 93
99
.10.1016/j.compstruct.2007.04.012
41.
Diederich
,
F. W.
,
1951
, “
A Planform Parameter for Correlating Certain Aerodynamic Characteristic of Swept Wings
,” NACA Report No. TN 2335.
42.
Julian
,
A. H.
,
1945
, “
General Theory of Airfoil Sections Having Arbitrary Shape or Pressure Distribution
,” NACA Report No. 833.
43.
Mazelsky
,
B.
,
1951
, “
Determination of Indicial Lift and Moment of a Two-Dimensional Sinking Airfoil at Subsonic Mach Numbers From Oscillatory Coefficients With Numerical Calculations for a Mach Number of 0.7
,” NACA Report No. TN 2562.
44.
Lomax
,
H.
,
Heaslet
,
M. A.
,
Fuller
,
F. B.
, and
Sluder
,
L.
,
1952
, “
Two and Three Dimensional Unsteady Lift Problems in High Speed Flights
,” NACA Report No. 1077.
45.
Meirovitch
,
L.
,
1996
,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
46.
Librescu
,
L.
, and
Na
,
S. S.
,
1998
, “
Dynamic Response Control of Thin-Walled Beams to Blast Pulses Using Structural Tailoring and Piezoelectric Actuation
,”
ASME J. Appl. Mech.
,
65
(
2
), pp.
497
504
.10.1115/1.2789082
47.
Barmby
,
J. G.
,
Cunningham
,
H. J.
, and
Garrick
, I
. E.
,
1950
, “
Study of Effects of Sweep on the Flutter of Cantilever Wing
,” NACA Report No. TN-2121.
48.
Shadmehri
,
F.
,
Haddadpour
,
H.
, and
Kouchakzadeh
,
M. A.
,
2007
, “
Flexural–Torsional Behavior of Thin-Walled Composite Beams With Closed Cross-Section
,”
Thin-Walled Struct.
,
45
, pp.
699
705
.10.1016/j.tws.2007.05.006
49.
Hodges
,
D. H.
, and
Pierce
,
G. A.
,
2002
,
Introduction to Structural Dynamics and Aeroelasticity
,
Cambridge University
,
Cambridge, UK
.
50.
Cunningham
,
H. J.
,
1951
, “
Analysis of Pure-Bending Flutter of a Cantilever Swept Wing and Its Relation to Bending-Torsion Flutter
,” NACA Report No. TN 1951.
You do not currently have access to this content.